ISOSPAN Baustoffwerk GmbH

ENVIRONMENTAL PRODUCT DECLARATION

Wood-chip concrete shuttering blocks

PLANT Ramingstein/Austria

in compliance with ISO 14025 and EN 15804

Program Operator	BAU EPD GmbH
Publisher	EPDItaly

Declaration Number	EPD-ISOSPAN-2017-4-Ecoinvent
Registration Number	EPDITALY0023

Issue Date	01/05/2017
Valid to	01/05/2022

Registered under the mutual recognition between EPDItaly and BAU EPD GmbH. www.epditaly.it

General information

Jubses rel Q

DI (FH) DI DI Sarah Richter Managing director Bau EPD GmbH

DI Hanna Schreiber Umweltbundesamt GmbH, Vienna

DI Roman Smutny Vice chairperson of expert committee (PKR-Gremium)

1 102 resper

DI Dr. sc ETHZ Florian Gschösser University of Innsbruck

Information: EPDs from similar product groups from different programmes might not be comparable.

Index

G	eneral	l information	. 2
1	Pro	oduct / system description	. 4
	1.1	General product description	. 4
	1.2	Product-related standards, regulations and guidelines	. 4
	1.3	Areas of application	. 4
	1.4	Technical data	. 5
	1.5	Conditions of delivery	. 5
2	De	scription of life cycle	. 6
	2.1	Base materials (main components and auxiliary materials)	. 6
	2.2	Production	. 6
	2.3	Packaging	. 6
	2.4	Transport	. 6
	2.5	Processing and installation	. 6
	2.6	Use stage	. 7
	2.7	End-of-life stage	. 7
3	Life	e cycle assessment	. 8
	3.1	Methodological assumptions	. 8
	3.2	Information on the life cycle for the assessment	. 9
	3.3	Declaration of environmental indicators	12
	3.4	Interpretation of the LCA results	23
4	Da	ngerous substances and emissions into indoor air and environment	47
	4.1	Declaration of substances of very high concern	47
	4.2	Formaldehyde emissions	47
	4.3	Radioactivity	47
	4.4	Leaching	47
5	Re	ferences	48

1 Product / system description

1.1 General product description

The products being examined are N 15, N 18, N 20, N 22, N 25, I 25, I 30 and TW 30. These are shuttering blocks made of wood-chip concrete as wall elements that can be used as lost shuttering for unreinforced and reinforced in-situ concrete walls. The product falls into the product group of prefabricated concrete products.

The life cycle inventory analysis data are representative of all of the wood-chip concrete shuttering blocks without integrated insulating material produced by ISOSPAN Baustoffwerk GmbH in 2015 at the Ramingstein production site. The mantle blocks are filled with reinforced filling concrete at the building site. The average bulk density of the wood concrete mass is 550 kg/m³, the thermal conductivity of the examined products ranges from 0.263 W/mK to 0.370 W/mK.

1.2 Product-related standards, regulations and guidelines

The following product-related standards, regulations and guidelines were taken into consideration:

- OENORM EN 14474:2012-09-01 Precast concrete products Concrete with wood-chips as aggregate Requirements and test methods
- OENORM EN 15498:2008-10-01 Precast concrete products Wood-chip concrete shuttering blocks Product properties and performance
- OENORM EN 16757:2016-07-01 Sustainability of construction works Environmental product declarations Product Category Rules for concrete and concrete elements
- EC Certificate of Conformity 1159-CPD-0285/11 from 19 June 2013
- European Technical Approval from 15 May 2013 (ETA-05/0261)

According to the above ETA, conformity with the now annulled Directive 89/106/EEC was granted. According to Article 66 of the (successor) Regulation (EU) No. 305/2011, there is conformity with this Regulation.

1.3 Areas of application

According to the European Technical Approval, the shuttering blocks made of wood-chip concrete are suitable for constructing aboveground and underground load-bearing or non-load-bearing inner and outer walls. Use of the shuttering system as free-standing walls or noise-insulating walls is also possible.

1.4 Technical data

The following table contains structural/technical data relevant for the normal blocks without insulation.

Table 1: Technical data

Description	N 15	N 18	N 20	N 22	Unit
Block dimensions: Width Height Length	0.15 0.25 1.10	0.18 0.25 1.25	0.20 0.25 1.25	0.22 0.25 1.00	m m m
Thermal conductivity	0.263	0.290	0.282	0.301	W/mK
Water vapour diffusion resistance	-	-	-	-	-
Bulk density (concrete block)	550	550	550	550	kg/m³
Tensile strength	> 0.15	> 0.15	> 0.15	> 0.15	N/mm²
Dry bulk density (oven-dried)	550	550	550	550	kg/m³
Weighted sound reduction index Rw	52	55	56	57	dB
Description	N 25	I 25	130	TW 30	Unit
Block dimensions: Width Height Length	0.25 0.25 1.25	0.25 0.25 1.25	0.30 0.25 1.25	0.30 0.25 1.25	m m m
Thermal conductivity	0.281	0.352	0.370	0.313	W/mK
Water vapour diffusion resistance	-	-	-	-	-
Bulk density (concrete block)	550	550	550	550	kg/m³
Tensile strength	> 0.15	> 0.15	> 0.15	> 0.15	N/mm²
Dry bulk density (oven-dried)	550	550	550	550	kg/m³
Weighted sound reduction index Rw	59	60	62	61	dB

1.5 Conditions of delivery

The products are delivered without pallets, but in the dimensions of a Europool pallet. The goods are stored without packaging in the open air until delivery.

2 Description of life cycle

2.1 Base materials (main components and auxiliary materials)

Table 2: Base materials of the examined products

Components of wood concrete:	kg/kg			
Wood-chips	0.530			
Cement	0.445			
Water	0.025			
Components of wood-chip concrete	N 15	N 18	N 20	N22
shuttering blocks:				
	kg/m²	kg/m²	kg/m²	kg/m²
Wood concrete	59.0	49.0	62.2	60.8
Components of wood-chip concrete	N 25	I 25	1 30	TW 30
shuttering blocks:				
	kg/m²	kg/m²	kg/m²	kg/m²
Wood concrete	78.0	77.8	82.2	105.4

Table 3: Further components for 1 m² of wall (declared unit)

Components of wall:	N 15	N 18	N 20	N 22	
	kg/m²	kg/m²	kg/m²	kg/m²	
Wood-chip concrete shuttering blocks	59.0	49.0	62.2	60.8	
Filling concrete *	154	220	228.8	266.2	
Reinforcing steel *	0.3	0.3	0.3	0.3	
Components of wall:	N 25	I 25	I 30	TW 30	
	kg/m²	kg/m²	kg/m²	kg/m²	
Wood-chip concrete shuttering blocks	78.0	77.8	82.2	105.4	
Filling concrete *	286	321.2	404.8	336.6	
Reinforcing steel *	0.3	0.3	0.3	0.3	

*The reinforcing steel and filling concrete are inserted in the wall on the building site and are therefore taken into consideration in construction stage A5

2.2 Production

The wood-chip concrete is produced at the plant in Ramingstein. Here wood-chips, cement and water are mixed and filled into moulding boxes. Then the blocks harden in the air and are milled to the same height.

2.3 Packaging

The hardened blocks are stored without packaging in the open air.

2.4 Transport

The wood-chip concrete shuttering blocks are transported from the manufacturing plant to the customer by truck. The average transport distance is 145 km.

2.5 Processing and installation

The mantle blocks are placed next to each other and on top of each other without grout. It must be ensured that there is level ground and, if necessary, this must be created using levelling grout for the first set of blocks. Then the mantle blocks are filled with concrete and this is compacted using internal vibrators. Corresponding processing guidelines are provided by the manufacturer.

2.6 Use stage

2.6.1 Use condition

With proper planning, correct and appropriate installation and disruption-free use there is no change in the material composition over the entire service life.

2.6.2 Environment & health during use

There are no known effects on the environment and health coming from the product. The result of the measurement to determine radioactivity is clearly below the limit stipulated in OENORM S 5200.

2.6.3 Reference service life (RSL)

The service life is the period of time from the installation of the product in the building up to disposal.

Table 4: Reference service life for wood-chip concrete shuttering blocks

Description	Value	Unit
Wood-chip concrete shuttering blocks with core concrete	100	Years

2.7 End-of-life stage

2.7.1 Re-use and recycling

The product cannot be re-used because it cannot be dismantled in a non-destructive way. Recycling at the end of the product life cycle would be conceivable but, on account of the high expense required for separating the building component layers and subsequent processing, this is not carried out.

2.7.2 Disposal

The product can be stored in construction waste landfills after the demolition of the building.

3 Life cycle assessment

3.1 Methodological assumptions

As the basis for the calculation of the life cycle assessment the method of CML 2001 v 4.1 ("baseline") dated from October 2012 (Institute of Environmental Sciences, Faculty of Science, University of Leiden, Netherlands) is used.

3.1.1 Type of EPD, system boundary

In this EPD all stages of the life cycle from cradle to grave are examined. Benefits and loads beyond the product system boundary are not declared.

3.1.2 Declared unit/functional unit

The declared unit is 1 m² of wall. In this report the functional unit corresponds with the declared unit.

Table 5: Declared unit

Description	Declared unit	Wood-chip concrete shuttering blocks	Filling concrete	Reinforcing steel	Total weight of the wall
	m²	kg/m²	kg/m²	kg/m²	kg/m²
N 15	1	59	154	0.3	213
N 18	1	49	220	0.3	269
N 20	1	62.2	228.8	0.3	291
N 22	1	60.8	266.2	0.3	327
N 25	1	78	286	0.3	364
125	1	77.8	321.2	0.3	399
1 30	1	82.2	404.8	0.3	487
TW 30	1	105.4	336.6	0.3	442

3.1.3 Calculation of averages

At the production plant mantle blocks and absorber elements for noise-insulating walls are manufactured. The energy consumption data were averaged over the entire production range.

3.1.4 Estimations and assumptions

For infrastructure data such as the machinery no specific data were collected, instead data sets of ecoinvent were used. The heat value of the wood-chips to calculate the renewable energy requirement was taken from ecoinvent and amounts to 17.2 MJ/kg wood. From the European Technical Approval it can be seen that the strength class of the filling concrete must at least correspond with class C16/20. Therefore, as a conservative assumption, concrete of strength class C20/25 was used as the filling concrete.

As reinforcing steel the data set of ecoinvent with a secondary share of 37% was used.

3.1.5 Cut-off criteria

All used raw materials were considered. Auxiliary materials such as lubricating oils and cleaning agents were ignored after a sensitivity analysis on the basis of a study of the National Brick Associations of Germany, Austria and Switzerland (cf. Bruck 1996).

In the upstream chains of the substances the general life cycle assessment rules of Bau-EPD GmbH were taken into consideration.

3.1.6 Data

The used data fulfil the following quality requirements:

- The data sets are up to date (production year 2015).
- There was compliance with the criteria of Bau EPD GmbH for data collection, generic data and cut-off of material and energy flows.

- A data validation as per EN ISO 14044:2006 was carried out.
- The used data correspond with the yearly average of the reference year.
- All essential data like energy and raw material demand, transport distances and packaging within the system boundary were provided by the manufacturer.
- The data are plausible, meaning that deviations from comparable results (other manufacturers, literature, similar products) are comprehensible.
- Data sets from ecoinvent v2.2 were used as the source of the background data.

3.1.7 Reporting period

All manufacturer-specific data concern the entire production quantity in 2015.

3.1.8 Allocation

The loads for the manufacture of the wood-chips are economically allocated by ecoinvent.

3.2 Information on the life cycle for the assessment

Table 6: Declared life cycle stages

_	PRODUCT STAGE		CON- STRU TION STAG	C-	USE S	USE STAGE				END- STAG	OF-LIFE E	Ξ		BENEFITS AND LOADS		
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Raw material supply	Transport	Manufacture	Transport	Construction/installation	Use	Maintenance	Repair	Replacement	Conversion, renovation	Energy use for operations	Water use for operations	Demolition	Transport	Waste management	Disposal	Potential for reuse, recovery, recycling
x	x	х	x	x	x	x	x	x	х	x	x	x	x	x	x	MND

X = included in life cycle assessment; MND = module not declared

3.2.1 A1-A3 Product stage

The wood-chips used are delivered by various sawmills from the region. They are cut up, blown through a tunnel into the production hall and here they are mixed with recycled grit of wood-chip concrete, cement and water. The wood-chip concrete mass thus created is finally shaped into mantle blocks in moulding boxes, compacted by shaking and stored in the drying zone for at least 24 h until hard. Subsequently the blocks are made the same height and length using a milling machine. The finished products are stacked in the open air at the storage location in the format of a Europool pallet.

The energy required for the production processes is covered by electricity. In winter, heating oil is additionally used to heat the production hall. Five diesel-powered forklift trucks are also used on the plant premises.

Description	Value	Measureme nt
Energy consumption broken down by energy carrier:		
Electricity	7.112	MJ/m²
Heating oil	2.759	MJ/m²
Diesel	1.440	MJ/m²
Fresh water consumption from rain water	-	m³/m²
Fresh water consumption from surface water	-	m³/m²
Fresh water consumption from well water	8.64E-03	m³/m²

Fresh water consumption from public water supply	-	m³/m²
--	---	-------

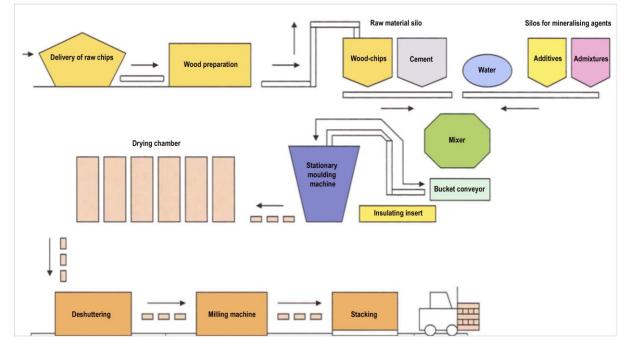


Figure 1: Diagram of the product stage (A1-A3) [ISOSPAN Baustoffwerk GmbH]

The sketched silos for mineralising agents and the addition of the insulating insert concern other products produced at the location and are therefore not used in the production of the wood-chip concrete shuttering blocks examined here.

3.2.2 A4-A5 Construction stage

The products are transported to the building site by truck. The average delivery distance is 100 km within Austria and 350 km for deliveries abroad. 82% of the products are used in buildings in Austria and 18% abroad. This gives an average delivery radius of 145 km for the wood-chip concrete shuttering blocks and the reinforcing steel. The filling concrete comes from regional concrete plants via concrete-mixing trucks from an average distance of 15 km. According to OENORM EN 16757, the environmental effects of the production of filling concrete and reinforcing steel are taken into consideration in stage A5.

Parameters to describe the transport to the building site (A4)	Value	Measurement
Average transport distance for wood-chip concrete shuttering blocks and reinforcing steel	145	km
Transport distance for the filling concrete	15	km
Vehicle type according to Commission Directive 2007/37/EC (European Emission Standard)		-
Average fuel consumption, fuel type:		l/100 km
Average transport mass		t
Average capacity utilisation (including empty returns)		%
Average bulk density of transported products		t /m³
Volume capacity utilisation factor (factor: =1 or <1 or \ge 1 for compressed or nested packaged products)	< 1	-

Table 9: Description of the scenario for "Installation of the product in the building (A5)" (as per Table 8 in OENORM EN 15804)

Parameters to describe the installation of the product in the building (A5)	Value	Measurement
Auxiliary materials for installation (specified by material)		kg/m³
	-	t/m³
		l/m³
Tools for installation (specified by type)	-	-
Other product components:		
Filling concrete (of strength class C20/25)	154-405	kg/m²
Reinforcing steel (37% secondary share)	0,3	kg/m²
Water consumption		m³/m³
	-	l/m³
Other resource use		kg/m³
	-	t/m³
		l/m³
Electricity consumption	-	kWh or MJ/m ³
Other energy carriers:	-	kWh or MJ/m ³
Wastage of materials on the building site before waste processing, generated by the	0.03	m²/m²
product's installation (specified by material)		···· , ····
Output materials (specified by material) as a result of waste processing at the building site,	0.03	
e.g. of collection for recycling, for energy recovery, disposal (specified by route)	waste for	m²/m²
	recycling	
Direct emissions to ambient air (e.g. dust, VOC), soil and water	-	kg/m³

3.2.3 B1-B7 Use stage

During the use stage of the product there are no material and energy flows relevant for the life cycle assessment.

3.2.4 C1-C4 End-of-life stage

The end-of-life stage of the wood-chip concrete shuttering blocks begins with the demolition of the building. It must be assumed that the inhomogeneous layers of the products are not separated but rather are disposed of together on construction waste landfills. A distance of 50 km was calculated as the average distance to the landfill.

Table 10: Description of the scenario for "Disposal of the product (C1 to C4)" (as per Table 12 in OENORM EN 15804)

Parameters for end-of-life stage (C1-C4)	Value	Measurement per m ²
		t collected separately
Collection process specified by type	- 0.213 to 0.487	t collected with mixed
	0.213 10 0.487	construction waste
	-	t for re-use
Recovery system specified by type	-	t for recycling
	-	t for energy recovery
Disposal specified by type	Entire wall	t product or material for
	0.213 to 0.487	final deposition

3.2.5 D Potential for reuse, recovery and recycling

The products cannot be dismantled non-destructively. Separation of the individual fractions is unlikely. Therefore no scenario regarding reuse, recovery and recycling has been calculated.

3.3 Declaration of environmental indicators

The impact assessment parameters listed in OENORM EN 15804:2014 are calculated.

It should be noted that the impact assessment results are only relative statements that do not include any statements about "end-points" of the impact categories, exceeding of thresholds, safety margins or risks.

For the global warming potential (GWP) the results are indicated with a division into "GWP process", "GWP C content" and "GWP total". GWP process contains all CO₂-equivalent emissions arising in the considered life cycle stages of the product. The "GWP C content" describes the share of carbon (biogenic CO₂) stored in renewable products. The corresponding values for specific materials are taken from "ecoinvent" and are displayed as negative numbers. The "GWP total" results from the sum of "GWP process" and "GWP C content".

3.3.1 Results of the product N 15

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4
GWP process	kg CO2 equiv	2.12E+01	1.41E+00	1.65E+01	0.00E+00	8.52E-01	1.76E+00	0.00E+00	1.51E+00
GWP C content	kg CO2 equiv	-5.66E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.12E+01
GWP total	kg CO2 equiv	-3.54E+01	1.41E+00	1.65E+01	0.00E+00	8.52E-01	1.76E+00	0.00E+00	4.27E+01
ODP	kg CFC- 11 equiv	6.73E-07	2.24E-07	4.62E-07	0.00E+00	1.06E-07	2.79E-07	0.00E+00	4.53E-07
АР	kg SO2 equiv	3.26E-02	5.42E-03	3.18E-02	0.00E+00	6.55E-03	6.75E-03	0.00E+00	8.99E-03
EP	kg PO₄³- equiv	2.27E-02	1.45E-03	2.02E-02	0.00E+00	1.53E-03	1.80E-03	0.00E+00	2.20E-03
РОСР	kg C₂H₄ equiv	6.50E-03	7.45E-04	5.09E-03	0.00E+00	7.74E-04	9.27E-04	0.00E+00	1.62E-03
ADPE	kg Sb equiv	8.02E-06	3.90E-06	9.03E-06	0.00E+00	1.35E-07	4.86E-06	0.00E+00	1.63E-06
ADPF	MJ H _u	1.22E+02	2.07E+01	9.86E+01	0.00E+00	1.17E+01	2.58E+01	0.00E+00	3.76E+01
Legend		Acidificatior tropospheri	n potential of c ozone; AD	land and wat	er; EP = Eutro depletion p	n potential o ophication po otential for 1	tential; POCP	= Formation	potential of

Table 11: Parameters to describe the impact assessment of the product N 15 per m² (ecoinvent 2.2)

Table 12: Parameters to describe the resource use of the product N 15 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4
PERE	MJ H _u	1.72E+01	2.95E-01	6.55E+00	0.00E+00	4.73E-02	3.67E-01	0.00E+00	3.04E-01
PERM	MJ H _u	5.38E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	MJ H _u	5.55E+02	2.95E-01	6.55E+00	0.00E+00	4.73E-02	3.67E-01	0.00E+00	3.04E-01
PENRE	MJ H _u	1.60E+02	2.19E+01	1.34E+02	0.00E+00	1.21E+01	2.73E+01	0.00E+00	3.95E+01
PENRM	MJ H _u	0.00E+00	0.00E+00						
PENRT	MJ H _u	1.60E+02	2.19E+01	1.34E+02	0.00E+00	1.21E+01	2.73E+01	0.00E+00	3.95E+01
SM	kg	0.00E+00	0.00E+00						
RSF	MJ H _u	0.00E+00	0.00E+00						
NRSF	MJ H _u	0.00E+00	0.00E+00						
FW	m³	8.75E-02	8.04E-04	3.04E-02	0.00E+00	2.41E-04	1.00E-03	0.00E+00	4.02E-03
Legend PERE = Renewable primary energy as energy carrier; PERM = Renewable primary energy resources; PENRE = Non-renewable primary energy as energy carrier; PENRM = Non-renewable primary energy as material utilise of non-renewable primary energy resources; SM = Use of secondary material Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW								-renewable utilisation; terial; RSF =	

Table 13: Parameters to describe the waste categories of the product N 15 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	
HWD	kg	1.49E-04	2.20E-05	1.54E-04	0.00E+00	6.19E-06	2.74E-05	0.00E+00	1.55E-05	
NHWD	kg	4.94E-01	1.38E-01	1.78E+00	0.00E+00	7.94E-03	1.72E-01	0.00E+00	2.13E+02	
RWD	kg	2.77E-04	3.26E-05	4.00E-04	0.00E+00	6.20E-06	4.05E-05	0.00E+00	3.37E-05	
Logand		HWD =	Hazardous	waste d	isposed; N	HWD =	Non-hazardo	us waste	disposed;	
Legend		RWD = Radioactive waste disposed								

Table 14: Parameters to describe the potential of waste treatment and recovery in the end-of-life stage of the product N 15 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4
CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MFR	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MER	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EEE	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EET	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Legend	÷		onents for re rials for ener			, .	ergy; EET = Ex	ported therm	al energy

3.3.2 Results of the product N 18

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4
GWP process	kg CO2 equiv	1.78E+01	1.17E+00	2.33E+01	0.00E+00	1.08E+00	2.22E+00	0.00E+00	1.91E+00
GWP C content	kg CO2 equiv	-4.70E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.00E+01
GWP total	kg CO2 equiv	-2.92E+01	1.17E+00	2.33E+01	0.00E+00	1.08E+00	2.22E+00	0.00E+00	4.19E+01
ODP	kg CFC- 11 equiv	5.80E-07	1.86E-07	6.43E-07	0.00E+00	1.34E-07	3.52E-07	0.00E+00	5.72E-07
АР	kg SO2 equiv	2.76E-02	4.50E-03	4.46E-02	0.00E+00	8.27E-03	8.52E-03	0.00E+00	1.13E-02
EP	kg PO₄³- equiv	1.92E-02	1.20E-03	2.83E-02	0.00E+00	1.93E-03	2.27E-03	0.00E+00	2.78E-03
РОСР	kg C₂H₄ equiv	5.47E-03	6.19E-04	7.10E-03	0.00E+00	9.78E-04	1.17E-03	0.00E+00	2.05E-03
ADPE	kg Sb equiv	6.71E-06	3.24E-06	1.26E-05	0.00E+00	1.71E-07	6.13E-06	0.00E+00	2.05E-06
ADPF	MJ H _u	1.05E+02	1.72E+01	1.37E+02	0.00E+00	1.48E+01	3.26E+01	0.00E+00	4.75E+01
Legend		GWP = Globa Acidification tropospheric potential for	potential of la ozone; ADPE	and and wate = Abiotic depl	r; EP = Eutro	phication pot	ential; POCP	= Formation	potential of

Table 15: Parameters to describe the impact assessment of the product N 18 per m² (ecoinvent 2.2)

Table 16: Parameters to describe the resource use of the product N 18 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4
PERE	MJ H _u	1.50E+01	2.45E-01	9.28E+00	0.00E+00	5.98E-02	4.64E-01	0.00E+00	3.84E-01
PERM	MJ H _u	4.47E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	MJ H _u	4.62E+02	2.45E-01	9.28E+00	0.00E+00	5.98E-02	4.64E-01	0.00E+00	3.84E-01
PENRE	MJ H _u	1.35E+02	1.82E+01	1.88E+02	0.00E+00	1.52E+01	3.45E+01	0.00E+00	4.99E+01
PENRM	MJ H _u	0.00E+00	0.00E+00						
PENRT	MJ H _u	1.35E+02	1.82E+01	1.88E+02	0.00E+00	1.52E+01	3.45E+01	0.00E+00	4.99E+01
SM	kg	0.00E+00	0.00E+00						
RSF	MJ H _u	0.00E+00	0.00E+00						
NRSF	MJ H _u	0.00E+00	0.00E+00						
FW	m ³	7.29E-02	6.67E-04	4.31E-02	0.00E+00	3.04E-04	1.26E-03	0.00E+00	5.07E-03
Person Person State of State of <th< td=""><td>-renewable utilisation; terial; RSF =</td></th<>								-renewable utilisation; terial; RSF =	

Table 17: Parameters to describe the waste categories of the product N 18 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4
HWD	kg	1.28E-04	1.83E-05	2.03E-04	0.00E+00	7.82E-06	3.46E-05	0.00E+00	1.96E-05
NHWD	kg	4.16E-01	1.15E-01	2.51E+00	0.00E+00	1.00E-02	2.17E-01	0.00E+00	2.69E+02
RWD	kg	2.37E-04	2.70E-05	5.63E-04	0.00E+00	7.83E-06	5.12E-05	0.00E+00	4.25E-05
Legend		HWD =	HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed						
Legenu		RWD = Radi	oactive waste	e disposed					

Table 18: Parameters to describe the potential of waste treatment and recovery in the end-of-life stage of the product N 18 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	С3	C4	
CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
MFR	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
MER	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
EEE	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
EET	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Legend		CRU = Components for re-use; MFR = Materials for recycling;								
Legend		MER = Mat	erials for ene	rgy recovery;	EEE = Export	ed electric en	ergy; EET = E	xported therr	mal energy	

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4
GWP process	kg CO2 equiv	2.22E+01	1.49E+00	2.42E+01	0.00E+00	1.16E+00	2.41E+00	0.00E+00	2.07E+00
GWP C content	kg CO2 equiv	-5.97E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.07E+01
GWP total	kg CO2 equiv	-3.74E+01	1.49E+00	2.42E+01	0.00E+00	1.16E+00	2.41E+00	0.00E+00	4.28E+01
ODP	kg CFC- 11 equiv	7.03E-07	2.36E-07	6.71E-07	0.00E+00	1.45E-07	3.81E-07	0.00E+00	6.19E-07
АР	kg SO2 equiv	3.42E-02	5.71E-03	4.64E-02	0.00E+00	8.94E-03	9.22E-03	0.00E+00	1.23E-02
EP	kg PO₄³- equiv	2.38E-02	1.52E-03	2.95E-02	0.00E+00	2.09E-03	2.46E-03	0.00E+00	3.01E-03
РОСР	kg C₂H₄ equiv	6.84E-03	7.85E-04	7.38E-03	0.00E+00	1.06E-03	1.27E-03	0.00E+00	2.22E-03
ADPE	kg Sb equiv	8.43E-06	4.11E-06	1.31E-05	0.00E+00	1.84E-07	6.63E-06	0.00E+00	2.22E-06
ADPF	MJ H _u	1.28E+02	2.19E+01	1.42E+02	0.00E+00	1.60E+01	3.53E+01	0.00E+00	5.14E+01
Legend GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozon Acidification potential of land and water; EP = Eutrophication potential; POCP = Formatio tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abi potential for fossil resources						= Formation	potential of		

Table 20: Parameters to describe the resource use of the product N 20 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4
PERE	MJ H _u	1.79E+01	3.11E-01	9.64E+00	0.00E+00	6.47E-02	5.02E-01	0.00E+00	4.15E-01
PERM	MJ H _u	5.67E+02	0.00E+00						
PERT	MJ H _u	5.85E+02	3.11E-01	9.64E+00	0.00E+00	6.47E-02	5.02E-01	0.00E+00	4.15E-01
PENRE	MJ H _u	1.67E+02	2.31E+01	1.96E+02	0.00E+00	1.65E+01	3.73E+01	0.00E+00	5.40E+01
PENRM	MJ H _u	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	MJ H _u	1.67E+02	2.31E+01	1.96E+02	0.00E+00	1.65E+01	3.73E+01	0.00E+00	5.40E+01
SM	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	MJ H _u	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	MJ H _u	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	m³	9.22E-02	8.47E-04	4.48E-02	0.00E+00	3.29E-04	1.37E-03	0.00E+00	5.49E-03
Legend		PERE = Renewable primary energy as energy carrier; PERM = Renewable primary energy resource material utilisation; PERT = Total use of renewable primary energy resources; PENRE = Non-renew primary energy as energy carrier; PENRM = Non-renewable primary energy as material utilis; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary materia = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of water							

Table 21: Parameters to describe the waste categories of the product N 20 per m ² (ecoinvent 2.2)
--

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4
HWD	kg	1.55E-04	2.32E-05	2.10E-04	0.00E+00	8.46E-06	3.74E-05	0.00E+00	2.12E-05
NHWD	kg	5.19E-01	1.45E-01	2.61E+00	0.00E+00	1.08E-02	2.35E-01	0.00E+00	2.91E+02
RWD	kg	2.90E-04	3.43E-05	5.86E-04	0.00E+00	8.47E-06	5.54E-05	0.00E+00	4.60E-05
Logond		HWD =	HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed						
Legend		RWD = Rad	ioactive wast	e disposed					

Table 22: Parameters to describe the potential of waste treatment and recovery in the end-of-life stage of the product N 20 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4
CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MFR	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MER	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EEE	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EET	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Legend CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electric energy; EET = Exported the						nal energy			

3.3.4 Results of the product N 22

Table 23: Parameters to describe the impact assessment of the product N 22 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4		
GWP process	kg CO2 equiv	2.18E+01	1.46E+00	2.81E+01	0.00E+00	1.31E+00	2.70E+00	0.00E+00	2.32E+00		
GWP C content	kg CO2 equiv	-5.83E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.80E+01		
GWP total	kg CO2 equiv	-3.66E+01	1.46E+00	2.81E+01	0.00E+00	1.31E+00	2.70E+00	0.00E+00	4.04E+01		
ODP	kg CFC- 11 equiv	6.90E-07	2.31E-07	7.75E-07	0.00E+00	1.63E-07	4.28E-07	0.00E+00	6.96E-07		
AP	kg SO2 equiv	3.35E-02	5.59E-03	5.37E-02	0.00E+00	1.01E-02	1.04E-02	0.00E+00	1.38E-02		
EP	kg PO₄³- equiv	2.33E-02	1.49E-03	3.41E-02	0.00E+00	2.34E-03	2.76E-03	0.00E+00	3.38E-03		
РОСР	kg C₂H₄ equiv	6.69E-03	7.68E-04	8.52E-03	0.00E+00	1.19E-03	1.42E-03	0.00E+00	2.49E-03		
ADPE	kg Sb equiv	8.25E-06	4.02E-06	1.52E-05	0.00E+00	2.07E-07	7.45E-06	0.00E+00	2.50E-06		
ADPF	MJ H _u	1.26E+02	2.14E+01	1.64E+02	0.00E+00	1.80E+01	3.96E+01	0.00E+00	5.77E+01		
Legend	·	Acidification tropospheric	GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential; POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abiotic depletion potential for fossil resources								

Table 24: Parameters to describe the resource use of the product N 22 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4
PERE	MJ H _u	1.76E+01	3.04E-01	1.12E+01	0.00E+00	7.27E-02	5.64E-01	0.00E+00	4.66E-01
PERM	MJ H _u	5.55E+02	0.00E+00						
PERT	MJ H _u	5.72E+02	3.04E-01	1.12E+01	0.00E+00	7.27E-02	5.64E-01	0.00E+00	4.66E-01
PENRE	MJ H _u	1.64E+02	2.26E+01	2.26E+02	0.00E+00	1.85E+01	4.19E+01	0.00E+00	6.07E+01
PENRM	MJ H _u	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	MJ H _u	1.64E+02	2.26E+01	2.26E+02	0.00E+00	1.85E+01	4.19E+01	0.00E+00	6.07E+01
SM	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	MJ H _u	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	MJ H _u	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	m³	9.01E-02	8.28E-04	5.20E-02	0.00E+00	3.70E-04	1.54E-03	0.00E+00	6.17E-03
Legend		PERE = Renewable primary energy as energy carrier; PERM = Renewable primary energy resource material utilisation; PERT = Total use of renewable primary energy resources; PENRE = Non-renew primary energy as energy carrier; PENRM = Non-renewable primary energy as material utilisat PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary material; = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of fi water							

Table 25: Parameters to describe the waste categories of the product N 22 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	
HWD	kg	1.52E-04	2.27E-05	2.38E-04	0.00E+00	9.51E-06	4.20E-05	0.00E+00	2.38E-05	
NHWD	kg	5.08E-01	1.42E-01	3.03E+00	0.00E+00	1.22E-02	2.64E-01	0.00E+00	3.27E+02	
RWD	kg	2.84E-04	3.36E-05	6.78E-04	0.00E+00	9.51E-06	6.22E-05	0.00E+00	5.17E-05	
Legend		HWD =	HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed;							
Legenu		RWD = Rad	ioactive waste	e disposed						

Table 26: Parameters to describe the potential of waste treatment and recovery in the end-of-life stage of the product N 22 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4
CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MFR	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MER	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EEE	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EET	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Legend CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electric energy; EET					ergy; EET = E	xported therr	nal energy		

3.3.5 Results of the product N 25

Table 27: Parameters to describe the impact assessment of the product N 25 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	С3	C4
GWP process	kg CO2 equiv	2.76E+01	1.87E+00	3.02E+01	0.00E+00	1.46E+00	3.01E+00	0.00E+00	2.59E+00
GWP C content	kg CO2 equiv	-7.48E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.11E+01
GWP total	kg CO₂ equiv	-4.72E+01	1.87E+00	3.02E+01	0.00E+00	1.46E+00	3.01E+00	0.00E+00	5.37E+01
ODP	kg CFC- 11 equiv	8.50E-07	2.96E-07	8.34E-07	0.00E+00	1.81E-07	4.76E-07	0.00E+00	7.75E-07
AP	kg SO2 equiv	4.21E-02	7.17E-03	5.76E-02	0.00E+00	1.12E-02	1.15E-02	0.00E+00	1.54E-02
EP	kg PO₄³- equiv	2.93E-02	1.91E-03	3.66E-02	0.00E+00	2.61E-03	3.07E-03	0.00E+00	3.76E-03
РОСР	kg C₂H₄ equiv	8.48E-03	9.85E-04	9.14E-03	0.00E+00	1.32E-03	1.58E-03	0.00E+00	2.77E-03
ADPE	kg Sb equiv	1.05E-05	5.16E-06	1.63E-05	0.00E+00	2.31E-07	8.30E-06	0.00E+00	2.78E-06
ADPF	MJ H _u	1.56E+02	2.74E+01	1.76E+02	0.00E+00	2.00E+01	4.41E+01	0.00E+00	6.43E+01
Legend		GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential; POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abiotic depletion potential for fossil resources							

Table 28: Parameters to describe the resource use of the product N 25 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4
PERE	MJ H _u	2.13E+01	3.90E-01	1.20E+01	0.00E+00	8.09E-02	6.28E-01	0.00E+00	5.19E-01
PERM	MJ H _u	7.11E+02	0.00E+00						
PERT	MJ H _u	7.33E+02	3.90E-01	1.20E+01	0.00E+00	8.09E-02	6.28E-01	0.00E+00	5.19E-01
PENRE	MJ H _u	2.06E+02	2.90E+01	2.43E+02	0.00E+00	2.06E+01	4.67E+01	0.00E+00	6.75E+01
PENRM	MJ H _u	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	MJ H _u	2.06E+02	2.90E+01	2.43E+02	0.00E+00	2.06E+01	4.67E+01	0.00E+00	6.75E+01
SM	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	MJ H _u	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	MJ H _u	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	m³	1.15E-01	1.06E-03	5.58E-02	0.00E+00	4.11E-04	1.71E-03	0.00E+00	6.86E-03
Legend		PERE = Renewable primary energy as energy carrier; PERM = Renewable primary energy resource material utilisation; PERT = Total use of renewable primary energy resources; PENRE = Non-renew primary energy as energy carrier; PENRM = Non-renewable primary energy as material utilisation; Pf = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = U renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of fresh water							-renewable tion; PENRT SF = Use of

Table 29: Parameters to describe the waste categories of the product N 25 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	С3	C4
HWD	kg	1.88E-04	2.91E-05	2.53E-04	0.00E+00	1.06E-05	4.68E-05	0.00E+00	2.65E-05
NHWD	kg	6.41E-01	1.82E-01	3.25E+00	0.00E+00	1.36E-02	2.94E-01	0.00E+00	3.64E+02
RWD	kg	3.53E-04	4.30E-05	7.28E-04	0.00E+00	1.06E-05	6.93E-05	0.00E+00	5.75E-05
Legend HWD = Hazardous RWD = Radioactive waste					sposed; NH	IWD =	Non-hazardo	us waste	disposed;

Table 30: Parameters to describe the potential of waste treatment and recovery in the end-of-life stage of the product N 25 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4		
CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
MFR	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
MER	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
EEE	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
EET	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Legend			CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electric energy; EET = Exported thermal energy								

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4
GWP process	kg CO2 equiv	2.75E+01	1.86E+00	3.38E+01	0.00E+00	1.60E+00	3.30E+00	0.00E+00	2.83E+00
GWP C content	kg CO2 equiv	-7.46E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.95E+01
GWP total	kg CO2 equiv	-4.71E+01	1.86E+00	3.38E+01	0.00E+00	1.60E+00	3.30E+00	0.00E+00	5.23E+01
ODP	kg CFC- 11 equiv	8.49E-07	2.95E-07	9.32E-07	0.00E+00	1.99E-07	5.22E-07	0.00E+00	8.49E-07
АР	kg SO2 equiv	4.20E-02	7.15E-03	6.45E-02	0.00E+00	1.23E-02	1.26E-02	0.00E+00	1.68E-02
EP	kg PO₄³- equiv	2.93E-02	1.91E-03	4.10E-02	0.00E+00	2.86E-03	3.37E-03	0.00E+00	4.12E-03
РОСР	kg C₂H₄ equiv	8.45E-03	9.82E-04	1.02E-02	0.00E+00	1.45E-03	1.74E-03	0.00E+00	3.04E-03
ADPE	kg Sb equiv	1.05E-05	5.14E-06	1.83E-05	0.00E+00	2.53E-07	9.09E-06	0.00E+00	3.05E-06
ADPF	MJ H _u	1.56E+02	2.73E+01	1.96E+02	0.00E+00	2.19E+01	4.83E+01	0.00E+00	7.05E+01
Legend GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone Acidification potential of land and water; EP = Eutrophication potential; POCP = Formation tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil resources; ADF depletion potential for fossil resources						= Formation	potential of		

Table 31: Parameters to describe the impact assessment of the	product I 25 per m ² (ecoinvent 2.2)
---	---

Table 32: Parameters to describe the resource use of the product I 25 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	С3	C4
PERE	MJ H _u	2.13E+01	3.89E-01	1.35E+01	0.00E+00	8.87E-02	6.88E-01	0.00E+00	5.69E-01
PERM	MJ H _u	7.10E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	MJ H _u	7.31E+02	3.89E-01	1.35E+01	0.00E+00	8.87E-02	6.88E-01	0.00E+00	5.69E-01
PENRE	MJ H _u	2.05E+02	2.89E+01	2.72E+02	0.00E+00	2.26E+01	5.11E+01	0.00E+00	7.40E+01
PENRM	MJ H _u	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	MJ H _u	2.05E+02	2.89E+01	2.72E+02	0.00E+00	2.26E+01	5.11E+01	0.00E+00	7.40E+01
SM	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	MJ H _u	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	MJ H _u	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	m³	1.15E-01	1.06E-03	6.26E-02	0.00E+00	4.51E-04	1.87E-03	0.00E+00	7.52E-03
PERE = Renewable primary energy as energy carrier; PERM = Renewable primary energy reso Legend primary energy as energy carrier; PENRM = Non-renewable primary energy as material utilisation = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of fresh w							-renewable tion; PENRT SF = Use of		

Table 33: Parameters to describe the waste categories of the product I 25 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	С3	C4
HWD	kg	1.88E-04	2.90E-05	2.80E-04	0.00E+00	1.16E-05	5.13E-05	0.00E+00	2.90E-05
NHWD	kg	6.40E-01	1.82E-01	3.64E+00	0.00E+00	1.49E-02	3.22E-01	0.00E+00	3.99E+02
RWD	kg	3.52E-04	4.29E-05	8.15E-04	0.00E+00	1.16E-05	7.59E-05	0.00E+00	6.31E-05
Legend HWD = Hazardous waste disposed; NHWD = Non-hazardous RWD = Radioactive waste disposed					us waste	disposed;			

Table 34: Parameters to describe the potential of waste treatment and recovery in the end-of-life stage of the product I 25 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4
CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MFR	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MER	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EEE	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EET	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Legend CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electric energy; EET = Exported then						orted therma	l energy		

3.3.7 Results of the product I 30

Table 35: Parameters to describe the impact assessment of the product I 30 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	С3	C4	
GWP process	kg CO2 equiv	2.90E+01	1.97E+00	4.25E+01	0.00E+00	1.95E+00	4.02E+00	0.00E+00	3.46E+00	
GWP C content	kg CO2 equiv	-7.89E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.96E+01	
GWP total	kg CO2 equiv	-4.98E+01	1.97E+00	4.25E+01	0.00E+00	1.95E+00	4.02E+00	0.00E+00	5.31E+01	
ODP	kg CFC- 11 equiv	8.90E-07	3.12E-07	1.17E-06	0.00E+00	2.43E-07	6.37E-07	0.00E+00	1.04E-06	
AP	kg SO2 equiv	4.42E-02	7.55E-03	8.07E-02	0.00E+00	1.50E-02	1.54E-02	0.00E+00	2.05E-02	
EP	kg PO₄³- equiv	3.08E-02	2.01E-03	5.13E-02	0.00E+00	3.49E-03	4.11E-03	0.00E+00	5.03E-03	
РОСР	kg C₂H₄ equiv	8.91E-03	1.04E-03	1.28E-02	0.00E+00	1.77E-03	2.12E-03	0.00E+00	3.71E-03	
ADPE	kg Sb equiv	1.10E-05	5.43E-06	2.29E-05	0.00E+00	3.09E-07	1.11E-05	0.00E+00	3.72E-06	
ADPF	MJ H _u	1.64E+02	2.89E+01	2.45E+02	0.00E+00	2.68E+01	5.90E+01	0.00E+00	8.60E+01	
Legend		GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential; POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abiotic depletion potential for fossil resources								

Table 36: Parameters to describe the resource use of the product I 30 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4
PERE	MJ H _u	2.22E+01	4.11E-01	1.69E+01	0.00E+00	1.08E-01	8.40E-01	0.00E+00	6.95E-01
PERM	MJ H _u	7.50E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	MJ H _u	7.72E+02	4.11E-01	1.69E+01	0.00E+00	1.08E-01	8.40E-01	0.00E+00	6.95E-01
PENRE	MJ H _u	2.16E+02	3.06E+01	3.40E+02	0.00E+00	2.76E+01	6.24E+01	0.00E+00	9.04E+01
PENRM	MJ H _u	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	MJ H _u	2.16E+02	3.06E+01	3.40E+02	0.00E+00	2.76E+01	6.24E+01	0.00E+00	9.04E+01
SM	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	MJ H _u	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	MJ H _u	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	m³	1.21E-01	1.12E-03	7.87E-02	0.00E+00	5.50E-04	2.29E-03	0.00E+00	9.18E-03
Legend	PERE = Renewable primary energy as energy carrier; PERM = Renewable primary energy material utilisation; PERT = Total use of renewable primary energy resources; PENRE = No primary energy as energy carrier; PENRM = Non-renewable primary energy as material utilis = Total use of non-renewable primary energy resources; SM = Use of secondary material; renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of fre:						PENRE = Non aterial utilisa ry material; R	-renewable tion; PENRT SF = Use of	

Table 37: Parameters to describe the waste categories of the product I 30 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	
HWD	kg	1.97E-04	3.06E-05	3.42E-04	0.00E+00	1.42E-05	6.26E-05	0.00E+00	3.54E-05	
NHWD	kg	6.74E-01	1.92E-01	4.57E+00	0.00E+00	1.82E-02	3.93E-01	0.00E+00	4.87E+02	
RWD	kg	3.69E-04	4.54E-05	1.02E-03	0.00E+00	1.42E-05	9.27E-05	0.00E+00	7.70E-05	
Logond		HWD =	Hazardous	waste dis	posed; NH	IWD =	Non-hazardo	us waste	disposed;	
Legenu	Legend		RWD = Radioactive waste disposed							

Table 38: Parameters to describe the potential of waste treatment and recovery in the end-of-life stage of the product I 30 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4
CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MFR	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MER	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EEE	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EET	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Legend		CRU = Compo	onents for re-	use; MFR = M	aterials for re	ecycling;			
Legenu		MER = Mater	ials for energy	y recovery; El	E = Exported	electric ener	gy; EET = Exp	orted therma	l energy

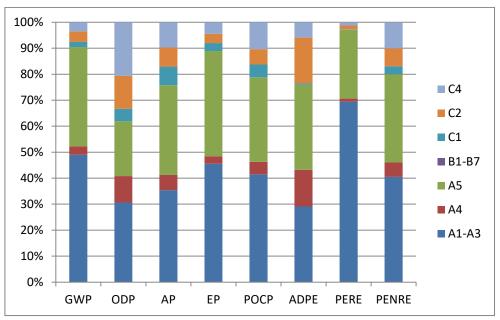
3.3.8 Results of the product TW 30

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4
GWP process	kg CO₂ equiv	3.69E+01	2.53E+00	3.54E+01	0.00E+00	1.77E+00	3.65E+00	0.00E+00	3.14E+00
GWP C content	kg CO₂ equiv	-1.01E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.11E+01
GWP total	kg CO2 equiv	-6.42E+01	2.53E+00	3.54E+01	0.00E+00	1.77E+00	3.65E+00	0.00E+00	7.42E+01
ODP	kg CFC- 11 equiv	1.11E-06	4.00E-07	9.81E-07	0.00E+00	2.20E-07	5.78E-07	0.00E+00	9.40E-07
AP	kg SO2 equiv	5.58E-02	9.68E-03	6.76E-02	0.00E+00	1.36E-02	1.40E-02	0.00E+00	1.86E-02
EP	kg PO4 ³⁻ equiv	3.89E-02	2.58E-03	4.29E-02	0.00E+00	3.17E-03	3.73E-03	0.00E+00	4.57E-03
РОСР	kg C₂H₄ equiv	1.13E-02	1.33E-03	1.07E-02	0.00E+00	1.61E-03	1.92E-03	0.00E+00	3.37E-03
ADPE	kg Sb equiv	1.41E-05	6.97E-06	1.92E-05	0.00E+00	2.80E-07	1.01E-05	0.00E+00	3.38E-06
ADPF	MJ H _u	2.05E+02	3.70E+01	2.06E+02	0.00E+00	2.43E+01	5.36E+01	0.00E+00	7.80E+01
Legend		Acidification tropospheric	potential of I	and and wate PE = Abiotic	er; EP = Eutro depletion po	n potential of phication pot otential for r	ential; POCP	= Formation	potential of

Table 39: Parameters to describe the impact assessment of the product TW 30 per m² (ecoinvent 2.2)

Table 40: Parameters to describe the resource use of the product TW 30 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	
PERE	MJ H _u	2.73E+01	5.27E-01	1.41E+01	0.00E+00	9.82E-02	7.62E-01	0.00E+00	6.30E-01	
PERM	MJ H _u	9.61E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
PERT	MJ H _u	9.89E+02	5.27E-01	1.41E+01	0.00E+00	9.82E-02	7.62E-01	0.00E+00	6.30E-01	
PENRE	MJ H _u	2.73E+02	3.92E+01	2.85E+02	0.00E+00	2.50E+01	5.66E+01	0.00E+00	8.20E+01	
PENRM	MJ H _u	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
PENRT	MJ H _u	2.73E+02	3.92E+01	2.85E+02	0.00E+00	2.50E+01	5.66E+01	0.00E+00	8.20E+01	
SM	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
RSF	MJ H _u	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
NRSF	MJ H _u	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
FW	m³	1.55E-01	1.44E-03	6.56E-02	0.00E+00	5.00E-04	2.08E-03	0.00E+00	8.33E-03	
Legend		material utilis primary energ = Total use of	ation; PERT = gy as energy c non-renewa	mary energy as energy carrier; PERM = Renewable primary energy resources as RT = Total use of renewable primary energy resources; PENRE = Non-renewable rgy carrier; PENRM = Non-renewable primary energy as material utilisation; PENRT ewable primary energy resources; SM = Use of secondary material; RSF = Use of fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of fresh water						


Table 41: Parameters to describe the waste categories of the product TW 30 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4
HWD	kg	2.45E-04	3.93E-05	2.92E-04	0.00E+00	1.29E-05	5.68E-05	0.00E+00	3.21E-05
NHWD	kg	8.54E-01	2.46E-01	3.81E+00	0.00E+00	1.65E-02	3.56E-01	0.00E+00	4.42E+02
RWD	kg	4.62E-04	5.82E-05	8.54E-04	0.00E+00	1.29E-05	8.41E-05	0.00E+00	6.98E-05
Legend		HWD = RWD = Radio	Hazardous active waste o		sposed; NH	IWD =	Non-hazardo	us waste	disposed;

Table 42: Parameters to describe the potential of waste treatment and recovery in the end-of-life stage of the product TW 30 per m² (ecoinvent 2.2)

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4
CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MFR	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MER	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EEE	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EET	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Legend		CRU = Components for re-use; MFR = Materials for recycling;							
Legenu		MER = Mater	ials for energy	/ recovery; EB	EE = Exported	electric ener	gy; EET = Exp	orted therma	l energy

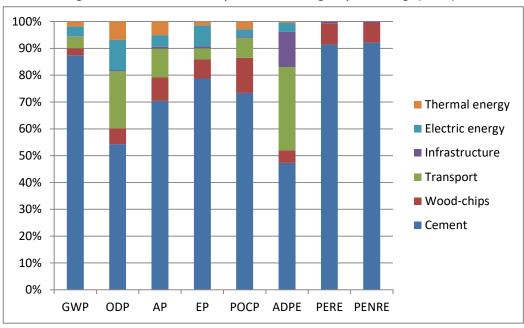
3.4 Interpretation of the LCA results

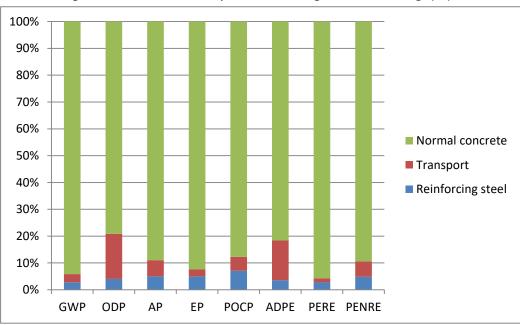
3.4.1 Life cycle assessment results of the product N 15

Figure 2: Shares of the individual life cycle stages in the total life cycle assessment of the product N 15 in selected impact indicators

GWP = Global warming potential (without consideration of the CO2 storage of wood and the carbonation of
the concrete at the landfill); ODP = Depletion potential of the stratospheric ozone layer;LegendAP = Acidification potential of land and water; EP = Eutrophication potential;
POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil
resources; PERE = Renewable primary energy as energy carrier; PENRE = Non-renewable primary energy as
energy carrier

Examining the ecological indicators over the entire life cycle illustrates that on average around 40% of the loads in the different impact categories come from the stages A1-A3. The effects of the installation stage (A5) are, depending on the category, roughly 20-40%. The demolition of the building and the disposal of the declared product play a lesser role.




Figure 3: Shares of loads of the product N 15 during the product stage (A1-A3)

GWP = Global warming potential (without consideration of the CO₂ storage of wood); ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential;

Legend

POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil resources; PERE = Renewable primary energy as energy carrier; PENRE = Non-renewable primary energy as energy carrier

In the product stage the ecological effects are mainly caused by the production of the used cement. The transport of the substances has a significant effect only in the categories ozone depletion potential and abiotic depletion potential. The energy input required to manufacture the declared product hardly plays a role in the life cycle assessment.

GWP = Global warming potential (without consideration of the CO₂ storage); ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential;
 POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil resources; PERE = Renewable primary energy as energy carrier; PENRE = Non-renewable primary energy as energy carrier

The loads in the installation stage are nearly entirely caused by the production of the filling concrete. A small part comes from the transport of the blocks from the manufacturer to the building site and from the transport of the filling concrete from the concrete plant to the building site.

3.4.2 Life cycle assessment results of the product N 18

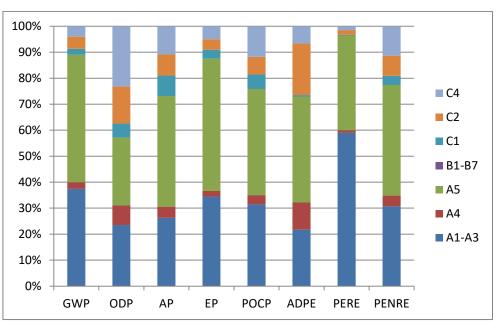


Figure 5: Shares of the individual life cycle stages in the total life cycle assessment of the product N 18 in selected impact indicators

LegendGWP = Global warming potential (without consideration of the CO2 storage of wood and the carbonation of
the concrete at the landfill); ODP = Depletion potential of the stratospheric ozone layer;
AP = Acidification potential of land and water; EP = Eutrophication potential;
POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil
resources; PERE = Renewable primary energy as energy carrier; PENRE = Non-renewable primary energy as
energy carrier

Examining the ecological indicators over the entire life cycle illustrates that on average around 30% of the loads in the different impact categories come from the stages A1-A3. The effects of the installation stage (A5) are, depending on the category, roughly 25-45%. The demolition of the building plays a lesser role. The loads at the landfill contribute around 5-20% to the overall life cycle assessment.

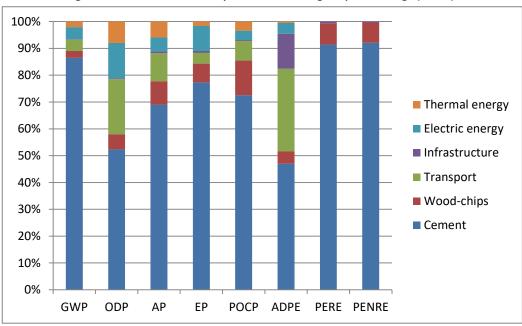


Figure 6: Shares of loads of the product N 18 during the product stage (A1-A3)

GWP = Global warming potential (without consideration of the CO₂ storage of wood); ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential;

Legend

POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil resources; PERE = Renewable primary energy as energy carrier; PENRE = Non-renewable primary energy as energy carrier

In the product stage the ecological effects are mainly caused by the production of the used cement. The transport of the substances has a significant effect only in the categories ozone depletion potential and abiotic depletion potential. The energy input required to manufacture the declared product hardly plays a role in the life cycle assessment.

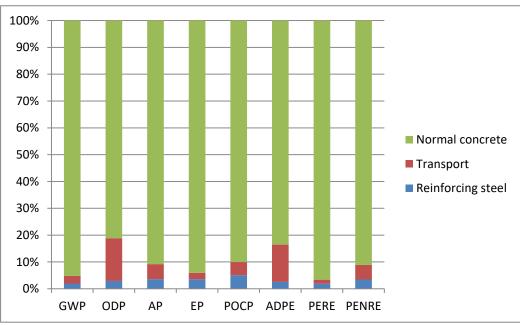


Figure 7: Shares of loads of the product N 18 during the installation stage (A5)

GWP = Global warming potential (without consideration of the CO₂ storage); ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential;
 Legend POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil resources; PERE = Renewable primary energy as energy carrier; PENRE = Non-renewable primary energy as energy carrier

The loads in the installation stage are nearly entirely caused by the production of the filling concrete. A small part comes from the transport of the blocks from the manufacturer to the building site and from the transport of the filling concrete from the concrete plant to the building site.

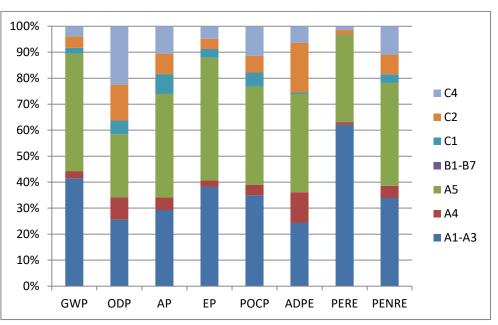


Figure 8: Shares of the individual life cycle stages in the total life cycle assessment of the product N 20 in selected impact indicators

LegendGWP = Global warming potential (without consideration of the CO2 storage of wood and the carbonation of
the concrete at the landfill); ODP = Depletion potential of the stratospheric ozone layer;
AP = Acidification potential of land and water; EP = Eutrophication potential;
POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil
resources; PERE = Renewable primary energy as energy carrier; PENRE = Non-renewable primary energy as
energy carrier

Examining the ecological indicators over the entire life cycle illustrates that, on account of the larger concrete volume, the production of the filling concrete has the biggest effects on the life cycle assessment in most categories. On average around 35% comes from the stage A1-A3. The demolition of the building plays a lesser role. The loads at the landfill contribute up to 20% to the overall life cycle assessment.

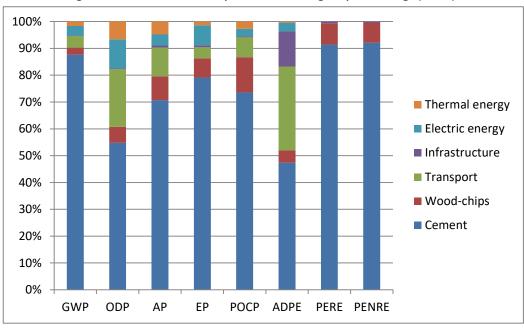


Figure 9: Shares of loads of the product N 20 during the product stage (A1-A3)

GWP = Global warming potential (without consideration of the CO₂ storage of wood); ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential;

Legend

POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil resources; PERE = Renewable primary energy as energy carrier; PENRE = Non-renewable primary energy as energy carrier

In the product stage the ecological effects are mainly caused by the production of the used cement. The transport of the substances has a significant effect only in the categories ozone depletion potential and abiotic depletion potential. The energy input required to manufacture the declared product hardly plays a role in the life cycle assessment.

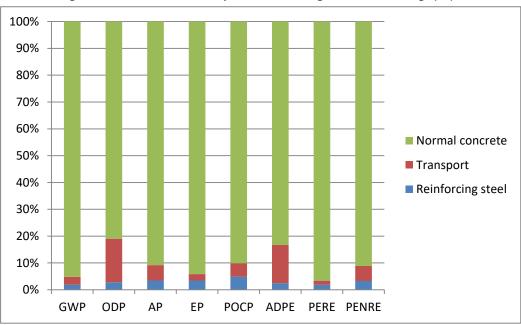


Figure 10: Shares of loads of the product N 20 during the installation stage (A5)

GWP = Global warming potential (without consideration of the CO₂ storage); ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential;
 Legend POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil resources; PERE = Renewable primary energy as energy carrier; PENRE = Non-renewable primary energy as energy carrier

The loads in the installation stage are nearly entirely caused by the production of the filling concrete. A small part comes from the transport of the blocks from the manufacturer to the building site and from the transport of the filling concrete from the concrete plant to the building site.

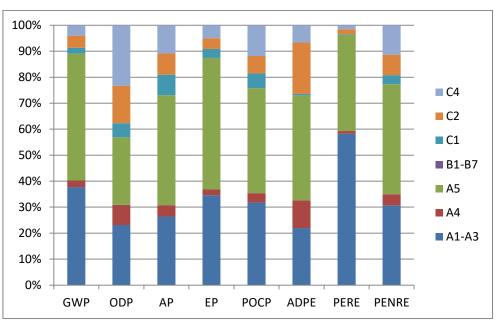
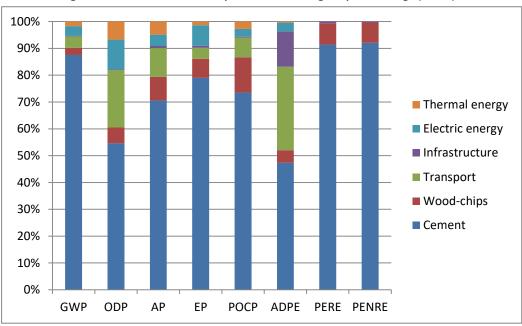
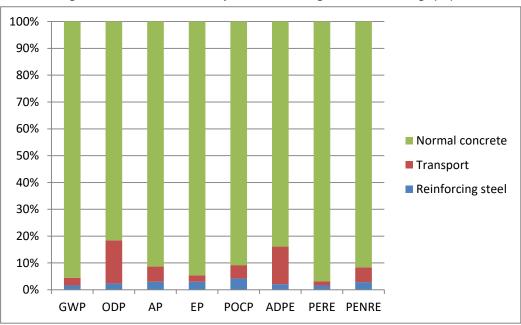


Figure 11: Shares of the individual life cycle stages in the total life cycle assessment of the product N 22 in selected impact indicators

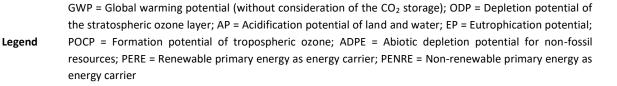
LegendGWP = Global warming potential (without consideration of the CO2 storage of wood and the carbonation of
the concrete at the landfill); ODP = Depletion potential of the stratospheric ozone layer;
AP = Acidification potential of land and water; EP = Eutrophication potential;
POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil
resources; PERE = Renewable primary energy as energy carrier; PENRE = Non-renewable primary energy as
energy carrier

Examining the ecological indicators over the entire life cycle illustrates that, on account of the high concrete volume, the production of the filling concrete has the biggest effects on the life cycle assessment in most categories. On average around 30% comes from the stage A1-A3. The demolition of the building plays a lesser role. The loads at the landfill contribute up to 20% to the overall life cycle assessment.




Figure 12: Shares of loads of the product N 22 during the product stage (A1-A3)

GWP = Global warming potential (without consideration of the CO₂ storage of wood); ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential;


Legend

POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil resources; PERE = Renewable primary energy as energy carrier; PENRE = Non-renewable primary energy as energy carrier

In the product stage the ecological effects are mainly caused by the production of the used cement. The transport of the substances has a significant effect only in the categories ozone depletion potential and abiotic depletion potential. The energy input required to manufacture the declared product hardly plays a role in the life cycle assessment.

The loads in the installation stage are nearly entirely caused by the production of the filling concrete. A small part comes from the transport of the blocks from the manufacturer to the building site and from the transport of the filling concrete from the concrete plant to the building site.

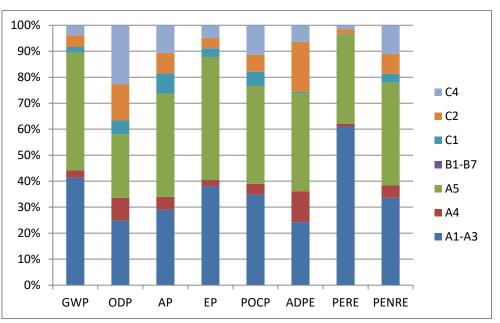


Figure 14: Shares of the individual life cycle stages in the total life cycle assessment of the product N 25 in selected impact indicators

LegendGWP = Global warming potential (without consideration of the CO2 storage of wood and the carbonation of
the concrete at the landfill); ODP = Depletion potential of the stratospheric ozone layer;
AP = Acidification potential of land and water; EP = Eutrophication potential;
POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil
resources; PERE = Renewable primary energy as energy carrier; PENRE = Non-renewable primary energy as
energy carrier

Examining the ecological indicators over the entire life cycle illustrates that, on account of the high concrete volume, the production of the filling concrete has the biggest effects on the life cycle assessment in most categories. On average around 30% comes from the stage A1-A3. The demolition of the building plays a lesser role. The loads at the landfill contribute up to 20% to the overall life cycle assessment.

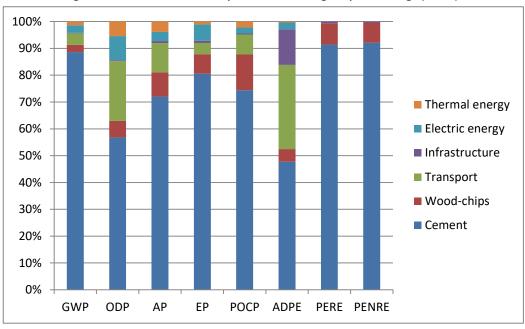


Figure 15: Shares of loads of the product N 25 during the product stage (A1-A3)

GWP = Global warming potential (without consideration of the CO₂ storage of wood); ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential;

Legend

POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil resources; PERE = Renewable primary energy as energy carrier; PENRE = Non-renewable primary energy as energy carrier

In the product stage the ecological effects are mainly caused by the production of the used cement. The transport of the substances has a significant effect only in the categories ozone depletion potential and abiotic depletion potential. The energy input required to manufacture the declared product hardly plays a role in the life cycle assessment.

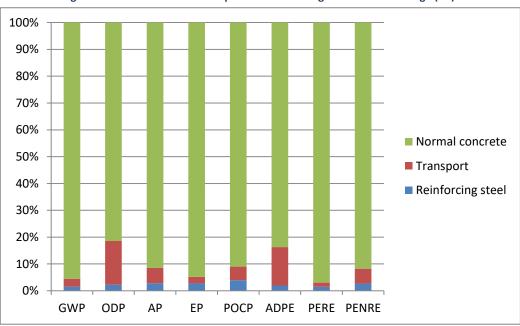
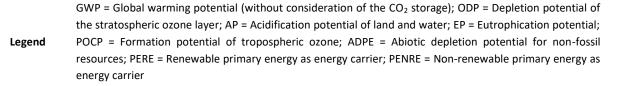



Figure 16: Shares of loads of the product N 25 during the installation stage (A5)

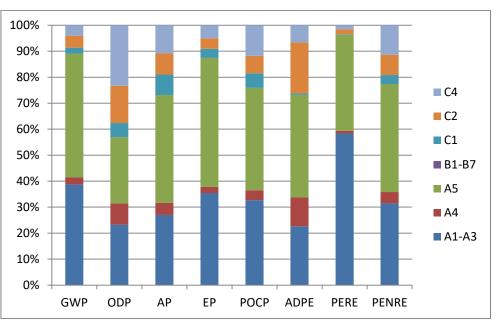


Figure 17: Shares of the individual life cycle stages in the total life cycle assessment of the product I 25 in selected impact indicators

LegendGWP = Global warming potential (without consideration of the CO2 storage of wood and the carbonation of
the concrete at the landfill); ODP = Depletion potential of the stratospheric ozone layer;
AP = Acidification potential of land and water; EP = Eutrophication potential;
POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil
resources; PERE = Renewable primary energy as energy carrier; PENRE = Non-renewable primary energy as
energy carrier

Examining the ecological indicators over the entire life cycle illustrates that, on account of the high concrete volume, the production of the filling concrete has the biggest effects on the life cycle assessment in most categories. On average around 30% comes from the stage A1-A3. The demolition of the building plays a lesser role. The loads at the landfill contribute up to 20% to the overall life cycle assessment.

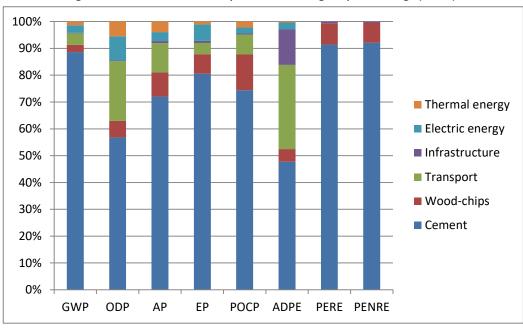


Figure 18: Shares of loads of the product I 25 during the product stage (A1-A3)

GWP = Global warming potential (without consideration of the CO_2 storage of wood); ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential;

Legend

POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil resources; PERE = Renewable primary energy as energy carrier; PENRE = Non-renewable primary energy as energy carrier

In the product stage the ecological effects are mainly caused by the production of the used cement. The transport of the substances has a significant effect only in the categories ozone depletion potential and abiotic depletion potential. The energy input required to manufacture the declared product hardly plays a role in the life cycle assessment.

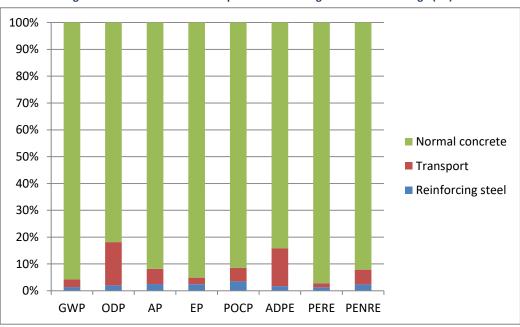
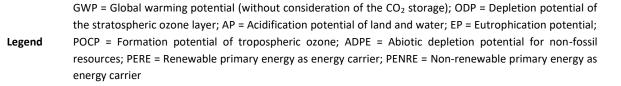



Figure 19: Shares of loads of the product I 25 during the installation stage (A5)

3.4.7 Life cycle assessment results of the product I 30

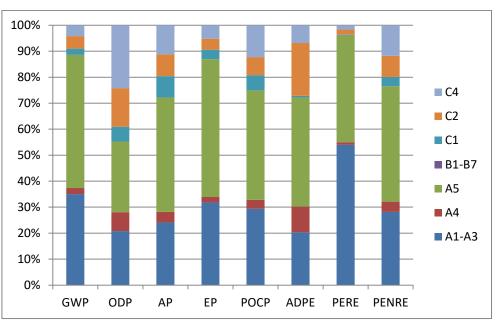


Figure 20: Shares of the individual life cycle stages in the total life cycle assessment of the product I 30 in selected impact indicators

LegendGWP = Global warming potential (without consideration of the CO2 storage of wood and the carbonation of
the concrete at the landfill); ODP = Depletion potential of the stratospheric ozone layer;
AP = Acidification potential of land and water; EP = Eutrophication potential;
POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil
resources; PERE = Renewable primary energy as energy carrier; PENRE = Non-renewable primary energy as
energy carrier

Examining the ecological indicators over the entire life cycle illustrates that, on account of the high concrete volume, the production of the filling concrete has the biggest effects on the life cycle assessment in most categories. On average around 25-30% comes from the stage A1-A3. The demolition of the building plays a lesser role. The loads at the landfill contribute up to 25% to the overall life cycle assessment.

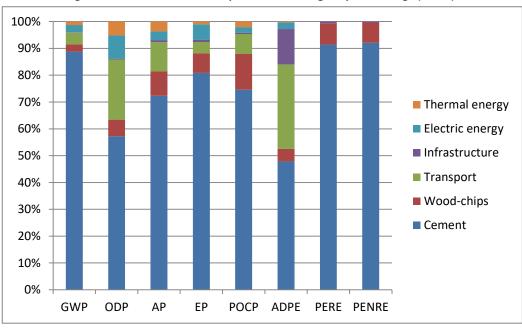


Figure 21: Shares of loads of the product I 30 during the product stage (A1-A3)

GWP = Global warming potential (without consideration of the CO₂ storage of wood); ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential;

Legend

POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil resources; PERE = Renewable primary energy as energy carrier; PENRE = Non-renewable primary energy as energy carrier

In the product stage the ecological effects are mainly caused by the production of the used cement. The transport of the substances has a significant effect only in the categories ozone depletion potential and abiotic depletion potential. The energy input required to manufacture the declared product hardly plays a role in the life cycle assessment.

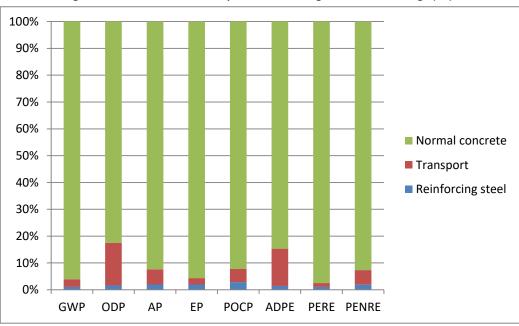
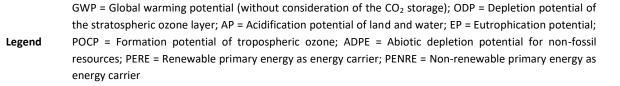



Figure 22: Shares of loads of the product I 30 during the installation stage (A5)

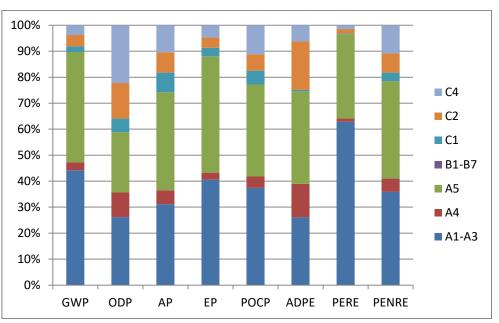
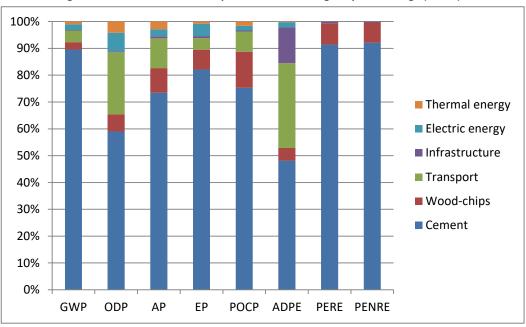
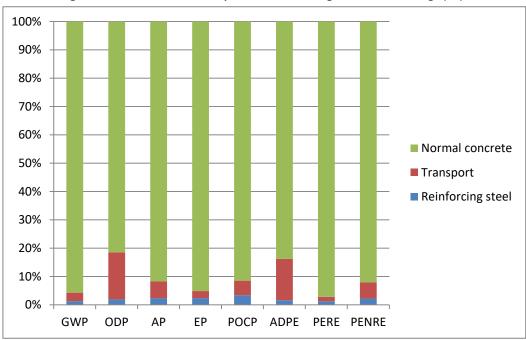


Figure 23: Shares of the individual life cycle stages in the total life cycle assessment of the product TW 30 in selected impact indicators

LegendGWP = Global warming potential (without consideration of the CO2 storage of wood and the carbonation of
the concrete at the landfill); ODP = Depletion potential of the stratospheric ozone layer;
AP = Acidification potential of land and water; EP = Eutrophication potential;
POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil
resources; PERE = Renewable primary energy as energy carrier; PENRE = Non-renewable primary energy as
energy carrier

Examining the ecological indicators over the entire life cycle illustrates that, in most categories, the manufacture of the filling concrete and the production of the wood-chip concrete shuttering block make roughly the same contribution to the ecological indicators. The demolition of the building plays a lesser role. The loads at the landfill contribute up to 20% to the overall life cycle assessment.




Figure 24: Shares of loads of the product TW 30 during the product stage (A1-A3)

GWP = Global warming potential (without consideration of the CO₂ storage of wood); ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential;

Legend

POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil resources; PERE = Renewable primary energy as energy carrier; PENRE = Non-renewable primary energy as energy carrier

In the product stage the ecological effects are mainly caused by the production of the used cement. The transport of the substances has a significant effect only in the categories ozone depletion potential and abiotic depletion potential. The energy input required to manufacture the declared product hardly plays a role in the life cycle assessment.

GWP = Global warming potential (without consideration of the CO₂ storage); ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential; POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil resources; PERE = Renewable primary energy as energy carrier; PENRE = Non-renewable primary energy as energy carrier

4 Dangerous substances and emissions into indoor air and environment

4.1 Declaration of substances of very high concern

Table 43: Declaration of substances of very high concern

Properties of hazardous materials as per EC Regulation 1272/2008 (CLP Regulation)	Chemical term (CAS Number)
Carcinogenic Cat. 1A or 1B (H350, H350i):	No such substances contained in the product
Mutagenic Cat. 1A or 1B (H340):	No such substances contained in the product
Toxic for reproduction Cat. 1A or 1B (H360F, H360D, H360FD, H360Fd, H360Df):	No such substances contained in the product
PBT (persistent, bioaccumulative and toxic) (REACH, Annex XIII):	No such substances contained in the product
vPvB (very persistent and very bioaccumulative) (REACH, Annex XIII):	No such substances contained in the product
Substances of very high concern (SVHC):	No such substances contained in the product

4.2 Formaldehyde emissions

There are no requirements regarding formaldehyde emissions for launching the product on the market.

4.3 Radioactivity

A sample of the wood-chip concrete shuttering block was examined for radioactivity by TÜV SÜD Industrie Service GmbH (Test report no. G 7110 001 for gamma-spectrometric measurements, from 25.04.2016).

Table 44: Result of the radioactivity measurement

Description	Value	Limit
Gamma-spectrometric measurement and evaluation of the chemical formula as per OENORM S 5200	0.055	1

4.4 Leaching

No measurements for leaching are required for launching the product on the market.

5 References

ISO 14025

OENORM EN ISO 14025 Environmental labels and declarations – Type III environmental declarations – Principles and procedures

ISO 14040

OENORM EN ISO 14040 Environmental management – Life cycle assessment – Principles and framework

ISO 14044

OENORM EN ISO 14044 Environmental management - Life cycle assessment - Requirements and guidelines

EN 15804

OENORM EN 15804 Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. Version: 2014-04-15

EN 16757

OENORM EN 16757:2016-07-01 – Sustainability of construction works – Environmental product declarations – Product Category Rules for concrete and concrete elements

General life cycle assessment rules

General Rules for LCA assessment and requirements on the project report. Bau-EPD GmbH. (Version 2.1, 11.04.2016)

Nutzungsdauerkatalog der Bau-EPD GmbH für die Erstellung von EPDs. Bau-EPD GmbH. (Version 0.02, 15.08.2016)

CML 2001

CML is a LCA methodology developed by the Center of Environmental Science (CML) of Leiden University in the Netherlands. More information on: <u>http://cml.leiden.edu/software/data-cmlia.html</u>

ecoinvent 2010

Database ecoinvent data v2.2. The Life Cycle Inventory. Published by Swiss Centre for Life Cycle Inventories, St. Gallen, 2010.

IBO 2010

Richtwerte für Baumaterialien – Wesentliche methodische Annahmen. Boogman Philipp, Mötzl Hildegund. Version 2.2, as of July 2007, with editorial revisions on 9.10.2009 and 24.02.2010, URL: http://www.ibo.at/documents/LCA_Methode_Referenzdaten_kurz.pdf.

ISOSPAN Baustoffwerk GmbH

Company ISOSPAN Baustoffwerk GmbH, Madling 177, 5591-Ramingstein, Austria

Dobbernack 1995

Dobbernack R. Auswertungen zur spezifischen Abbrandrate der vorliegenden m-Faktor-Versuche. IBMB TU Braunschweig, 1995

Di Nenno 2002

Di Nenno, P.J., et al.: SFPE Handbook of Fire Protection Engineering, 3rd edition, Boston, 2002

	Publisher		
Bau-EPD 🎎	Bau EPD GmbH	Tel	+43 (1)997 41 11
Baustoffe mit Transparenz	Seidengasse 13/3	Mail	office@bau-epd.at
,	1070 Vienna	Web	www.bau-epd.at
	Austria		
	Programme operator		
Bau-EPD 🎎	Bau EPD GmbH		
	Seidengasse 13/3	Tel	+43 (1)997 41 11
Baustoffe mit Transparenz	1070 Vienna	Mail	office@bau-epd.at
	Austria	Web	www.bau-epd.at
	Author of the life cycle assessment		
	IBO Österreichisches Institut	Markus Wurm/Philipp Boogman	
	für Bauen und Ökologie GmbH	Tel	+43 (1) 319 20 05-14
	Alserbachstraße 5/8	Fax	+43 (1) 319 20 05-50
	1090 Vienna	Mail	markus.wurm@ibo.at
	Austria	Web	www.ibo.at
	Owner of the declaration		
<i>Ι ΙΟυ ζ μ ΟΓΗΠ ζ</i>	ISOSPAN Baustoffwerk GmbH	Tel	+43 (0) 6475 251-0
Naturbaustoffe	Madling 177	Fax	+43 (0) 6475 251-19
	5591 Ramingstein	Mail	info@isospan.at
	Austria	Web	http://www.isospan.eu