HENGTONG OPTIC ELECTRIC CO., LTD

ENVIRONMENTAL PRODUCT DECLARATION

Product: name:

Underground high voltage cables:

Site Plant: Hengtong avenue 88, Qidu, 215200, Suzhou City (China)

A1/XLPE/CWS/APL/PE

76/132(145) kV 1C1200mm² H120 Spain;

A1/XLPE/CWS/APL/PE

76/132(145) kV 1C1200mm² H240 Colombia;

Program Operator	EPDItaly
Publisher	EPDItaly
Declaration Number	HENGTONG002
Registration Number	EPDItaly0552
Issue date	05/04/2024
Valid to	05/04/2029

in compliance with ISO 14025 and EN 50693

General information

EPD OWNER	Hengtong Optic-Electric co., LTD
	Hengtong avenue 88, Qidu, 215200, Suzhou City (China)
SITE	Production site: No. 8 Tongda Road Economic Development Zone, Changshu, Jiangsu Province, China
FIELD OF APPLICATION OF THE PRODUCT	This document refers to the study of two underground cables suitable for the transport of high voltage electricity: Al/XLPE/CWS/APL/PE 76/132/(145)kV 1C1200mm ² H120 and Al/XLPE/CWS/APL/PE 76/132/(145)kV 1C1200mm ² H240 with both an aluminum conductor body. These two cables have similar features and weight but the first will be installed in Spain and the second in Colombia.
PROGRAM OPERATOR	EPDItaly – <u>info@epditaly.it</u>
VERIFICATION INFORMATION	 The PCR EPDITALY007 review was performed by Ing. Massimo De Pieri, Arch. Michele Paleari, Ing. Sara Toniolo info@epditaly.it. Independent verification of the declaration and data, carried out according to ISO 14025: 2010. Internal ☑ External
	Third party verification carried out by: ICMQ S.p.A., via Gaetano De Castillia n ° 10 - 20124 Milan, Italy. Accredited by Accredia.
EPD type	Product specific EPD
CPC CODE	463 – family "Insulated wire and cable; optical fibre cables" and sub-sequent clusters
CONTACTS for information on the EPD	Linda Li <lidm@htgd.com.cn></lidm@htgd.com.cn>
PROJECT REPORT LCA	Rete Clima - Via Cacciatori delle Alpi 1/a, 22070 Capiago Intimiano (CO) web: <u>www.reteclima.it</u> email: <u>info@reteclima.it</u>
COMPARABILITY STATEMENT	Environmental statements published within the same product category, but from different programs, may not be comparable.
LIABILITY STATEMENT	Hengtong Optic-Electric co., LTD releases EPDItaly non-compliance with environmental legislation. The holder of the declaration will be responsible for the information and supporting evidence. from any disclaims any responsibility for the information, data and results provided by the EPD Owner for life cycle assessment.
PRODUCT CATEGORY RULES – PCR	Core-PCR: EPDITALY007 " Electronic and electrical product and systems" Rev. 3 – 13/01/2023 Sub-PCR: EPDITALY016 "Electronic and electrical product and systems – Cables and wires" Rev. 2 del 25/09/2020

In this study 2 underground cables (AI/XLPE/CWS/APL/PE 76/132(145) kV 1C1200mm² H120 and AI/XLPE/CWS/APL/PE 76/132(145) kV 1C1200mm² H240) for transporting high-voltage electricity were analyzed. In both the conductor body is made of aluminum while the coating of the conducting elements is made up of various materials such as cross-linked polyethylene and insulating copper or aluminum tapes that give thermal insulation and impermeability to the cable, produced by Hengtong Group. These two cables have similar features and weight but the first will be installed in Spain and the second in Colombia. Here in after the two cables will be named respectively: AI 145 KV 1200 Spain and AI 145 KV 1200 Colombia. The assessment followed the EPDItaly Program in accordance with standards (ISO 14040 and 14044) and other reference documents already cited in the introduction (PCR EPDItaly016 - Cables and wires). The PCR identifies and records: the objective and scope of LCA-based information for the product category; the rules for producing additional environmental information; the life cycle stages to be included; the parameters to consider and how the data should be collected and communicated in a report.

Table 1 shows components and total weight of the cables.

Materials	Unit	Al 145kV 1200 Colombia	Al 145kV 1200 Spain
Copper	kg/km	2.344,3	1.340,4
Aluminum	kg/km	3.571,1	3.571,1
Insulation material	kg/km	3.861,1	3.911,9
PE flame retardant	kg/km	1.633,6	1.862,5
Other	kg/km	640,1	571,32
Cable total weight	kg/km	12.050,3	11.257,2

Table 1 Components	and tota	ıl weight
--------------------	----------	-----------

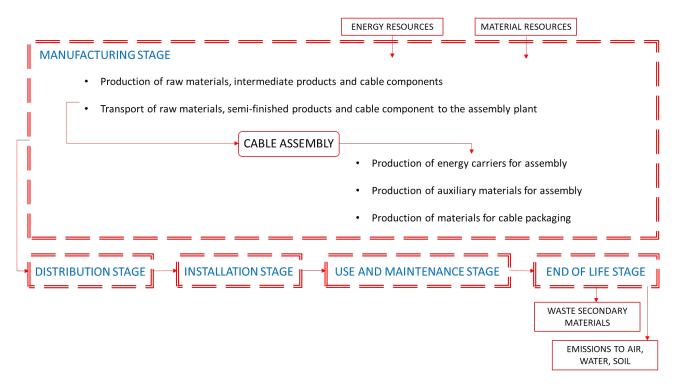
Hengtong Optic-Electric CO., LTD

Hengtong Group is a company based in China engaged in research and development, design, production, and sale of products for fiber optic communication networks and for energy transport; it ranks seventh in Integer's Top 100 Electric Cable Manufacturers ranking. The company owns multiple management systems certified according to 7S, ISO9001, ISO14001, OHSASI8001, IEC, AMD standards; this means that the quality control mode, the whole process, the full performance, have been implemented in a comprehensive way.

Goal and scope of the study

In this study was analyzed two underground cables for transporting high-voltage electricity. Both the cables have an aluminum conductor body for the transport and distribution of high voltage electrical energy. The coating of the conducting elements is made up of various materials such as cross-linked polyethylene and insulating copper or aluminum tapes that give thermal insulation and impermeability to the cables.

After production, the cables are rolled up on steel coils and covered with wood; the coils are coated with plastic film, and they are then loaded on wooden pallets and transported first by truck and then by ship to the


installation site (Spain and Colombia). The cables are laid underground within a high-density polyethylene pipe; the end-of-life scenario includes landfill, incineration, and recycling with varying percentages for the different types of materials.

This study considers the life cycle of the product, from the extraction of raw materials to disposal and disposal at the end of its life, according to the cradle to grave approach - "from cradle to grave". The modules included in the evaluation, in accordance with the PCR and the reference technical regulations.

MANUFACTUR ING STAGE		DISTRIBUTION STAGE	INSTALLATION STAGE	USE & Maintenance STAGE	END-OF-LIFE STAGE De-installation
UPTREAM CORE MODULE MODULE		D	OWNSTREAM MOI	DULE	
extraction of raw materials, including waste recycling processes and the production of semi- finished and ancillary products	manufacturing of the product constituents, including all the stages				
transportation of raw materials to the manufacturing company	product assembly	In accordance with EN 50693			
	packaging				
	waste recycling processes				

Table 2: Modules considered in the evaluation, according to the approach "from cradle to grave"

Figure 1: System boundaries flowchart

.....

EPD TYPE	The EPD followed a cradle to grave approach.
Geographical validity	The assessment was carried out in relation to the production site in Suzhou City (China). The main reference market is located in Spain for Al 145 KV 1200 Spain cable and Colombia for Al 145 KV 1200 Colombia cable.
Database	Ecoinvent 3.8
Software	SimaPro 9.4

Product features and components

The construction, dimensions and technical parameters of the cables are detailed below (all data provided by Hengtong Group CO).

1. Cable AL 138KV 1200 Spain

Table 3 shows all the cable components with description, nominal thickness, and diameter (expressed in mm) of AL 138KV 1200 Spain.

No.	Construction	Description	Nominal Thickness (mm)	Diameter (mm) (Approx.)
1	Conductor	Milliken circular aluminium conductor (class 2) with water blocking tape	/	44,0
2	Conductor screen	Semi-conducting tape and extruded semi-conducting thermosetting compound	0,3+0,2+1,5	80.2
3	Insulation	XLPE	Nom.16,0 Min. 14,4	80,2
4	Insulation screen	Extruded semi-conducting thermosetting compound	1,5	
5	Water blocking	Semi-conducting water swelling tape	2,0	
6	Metallic screen	Copper wires with copper tape counter open-helix wrapped	68/Ф1,6+0,1	
7	Water blocking	Semi-conducting water blocking tape	0,5	101,7
8	Metal foil laminate	Al-PE laminate foil	0,25	
9	Over sheath	Flame retardant PE(Black)ST7	4,0	
10	Outer conductive layer	Extruded semi-conductive layer		

Table 4 shows the cable technical parameters and specifically the mechanical and electrical parameter.

No.	Description	unit	Parameters
Mec	hanical Parameters		
1	Min. bending radius during installation	mm	2034
2	Min. bending radius installed	mm	1526
3	Max. allowable pulling tension of conductor	kN	48
4	Total weight of completed cable (Approx.)	kg/m	10,8
Elect	rical Parameters		
1	Rated Frequency	Hz	50
2	Rated voltage of cable, U0/U(Um)	kV	76/132(145)
3	Impulse lightning voltage of cable	kV	650
4	Maximum DC resistance of conductor at 20°C	Ohm/km	0,0247
5	Maximum AC resistance of conductor at 90°C	Ohm/km	0,0319
6	Maximum DC resistance of a screen at 20°C	Ohm/km	0,149
7	Conductor to screen capacitance	μF/km	0,274
8	Nominal electrical stress at conductor screen @U0	kV/mm	6,2
9	Nominal electrical stress at insulation screen @U0	kV/mm	3,7
10	Charge current @U0	A/km	6,5
11	Short circuit current for screen, 0.5s	kA	23,0
12	Short circuit current for conductor, 1s	kA	160,3
13	Max. continuous operation temperature for conductor	°C	90
14	Max. temperature at short circuit (≤5s) for conductor	С°	250

Tabella 4 Cable mechanical e technical parameter of AL 138KV 1200 Spain

* Wrong data deriving from the technical sheet, value used for the calculation is 11,2 t/km.

Table 5 shows standards and certifications followed for cable design.

Table 5 Standards and certifications

ISO 9001	Quality Management Systems-Requirements
ISO 45001	Occupational health and safety management system
ISO 14001	Environment Management System
IEC 60183-2015	Guidance for selection of high voltage A.C. cable systems
IEC 60228-2004	Conductors of insulated cables
IEC 60840-2020	Power cables with extruded insulation and their accessories for rated voltages above 30kV (Um=36kV)up to 150kV(Um=170kV) – Test methods and requirements
IEC 60287-1-1- 2014	Electric cables-Calculation of the current rating- Part 1-1: Current rating equations (100% load factor) and calculation of losses-General
IEC 60287-2-1- 2015	Electric cables-Calculation of the current rating- Part 2-1: Thermal resistance - Calculation of thermal resistance
IEC 60949-2008	Calculations of thermally permissible short circuit currents, taking into account non-adiabatic heating effects

2. Cable AL 138KV 1200 Colombia

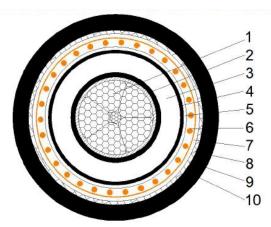


Table 6 shows all the cable components with description, nominal thickness, and diameter (expressed in mm) of AL 138KV 1200 Colombia.

No.	Construction	Description	Nominal Thickness (mm)	Diameter (mm) (Approx.)
1	Conductor	Stranded compact segmental circular copper conductor (class 2) with water blocking tape	/	44,0
2	Conductor screen	Semi-conducting tape and extruded semi-conducting thermosetting compound	0,3+0,2+1,5	00 F
3	Insulation	XLPE	16,0	83,5
4	Insulation screen	Extruded semi-conducting thermosetting compound	1,5	
5	Water blocking	Semi-conducting water swelling tape	2,0	
6	Metallic screen	Copper wires with copper tape counter open-helix wrapped	96/Ф1,8+0,1	
7	Water blocking	Semi-conducting water blocking tape	0,5	93,3
8	Metal foil laminate	AI-PE laminate foil	0,25	
9	Over sheath	Flame retardant and halogen free PE(Black)	4,0	
10	Outer conductive layer	Graphite	/	101,3

Table 6 Cable features of AL 138KV 1200 Colombia

Table 7 shows the cable technical parameters and specifically the mechanical and electrical parameter.

Table 7 Cable mechanical e technical parameter

No.	Description	unit	Parameters			
Mec	Mechanical Parameters					
1	Min. bending radius during installation	mm	2026			
2	Min. bending radius installed	mm	1520			
3	Max. allowable pulling tension of conductor	kN	48			
4	Total weight of completed cable (Approx.)	kg/m	11,9			
Elect	Electrical Parameters					
1	Rated Frequency	Hz	60			
2	Rated voltage of cable, U0/U(Um)	kV	76/132(145)			
3	Impulse lightning voltage of cable	kV	650			
4	Maximum DC resistance of conductor at 20°C	Ohm/km	0,0247			
5	Maximum AC resistance of conductor at 90°C	Ohm/km	0,0320			
6	Conductor to screen capacitance	μF/km	0,274			

7	Nominal electrical stress at conductor screen @U0	kV/mm	6,2
8	Nominal electrical stress at insulation screen @U0	kV/mm	3,7
9	Charge current @U0	A/km	7,9
10	Inductance per unit length	mH/km	0,355
11	Short circuit current for screen, 0.5s	kA	41,0
12	Short circuit current for conductor, 1s	kA	160,3
13	Max. continuous operation temperature for conductor	°C	90
14	Max. temperature at short circuit (≤5s) for conductor	°C	250

* Wrong data deriving from the technical sheet, value used for the calculation is 12 t/km.

Table 8 shows standards and certifications followed for cable design.

Table 8 Standards and certifications

ISO 9001	Quality Management Systems-Requirements
ISO 45001	Occupational health and safety management system
ISO 14001	Environment Management System
IEC 60183-2015	Guidance for selection of high voltage A.C. cable systems
IEC 60228-2004	Conductors of insulated cables
IEC 60840-2020	Power cables with extruded insulation and their accessories for rated voltages above
IEC 00840-2020	30kV(Um=36kV)up to 150kV(Um=170kV) – Test methods and requirements
IEC 60287-1-1-	Electric cables-Calculation of the current rating- Part 1-1: Current rating equations (100% load
2014	factor) and calculation of losses-General
IEC 60287-2-1-	Electric cables-Calculation of the current rating- Part 2-1: Thermal resistance - Calculation of
2015	thermal resistance
150 0000 2000	Calculations of thermally permissible short circuit currents, taking into account non-adiabatic
IEC 60949-2008	heating effects

Impact Assessment

1. Impact assessment of Al 145kV 1200 Spain:

Table 9: Impact assessment of AL 145 KV 1200 Spain	n
--	---

			IMPACT /	ASSESSMENT				
			1. Manufacturing Stage	0	2. Distribution Stage	3. Installation Stage	4. Use and Maintenance Stage	5. End of Life Stage
INDICATOR	UM	TOTAL	UPSTREAM	CORE		DOWNS	STREAM	
GWP – total	kg CO₂eq	1,61E+05	1,30E+05	1,03E+02	2,61E+03	2,05E+04	3,40E+00	7,91E+03
GWP – fossil	kg CO₂eq	1,55E+05	1,30E+05	1,03E+02	2,60E+03	2,03E+04	3,35E+00	1,60E+03
GWP – biogenic	kg CO₂eq	5,22E+03	-9,28E+02	1,05E-01	6,43E-01	1,71E+02	2,05E-02	5,98E+03
GWP – luluc	kg CO₂eq	1,18E+02	1,09E+02	1,41E-02	4,29E-02	8,40E+00	2,78E-02	2,30E-02
ODP	kg CFC-11eq	1,27E-02	9,85E-03	1,29E-05	5,47E-04	2,13E-03	2,07E-07	1,64E-04
POCP	kg NMVOC eq	6,71E+02	5,11E+02	1,74E-01	5,64E+01	9,39E+01	1,24E-02	8,72E+00
AP	mol H⁺eq	1,90E+03	1,71E+03	1,96E-01	8,04E+01	9,93E+01	2,88E-02	6,16E+00
EP- freshw	kg P eq	3,75E+01	3,48E+01	1,65E-02	1,60E-02	2,53E+00	1,22E-03	1,23E-01
WDP	m ³ depriv.	1,51E+05	1,30E+05	3,81E+01	-3,65E+00	2,07E+04	2,26E+00	9,88E+01
ADP – fossil	kg Sb eq	6,16E+00	6,15E+00	1,21E-05	5,07E-05	3,03E-03	1,34E-07	5,96E-05
ADP- min&met	MJ	2,09E+06	1,59E+06	6,40E+02	3,39E+04	4,54E+05	8,06E+01	1,04E+04
biogenic; GWP-lu	bal Warming Pote luc = Global Warn	ning Potentia		nd use chang	e; ODP = Deple	etion potentia	l of the strato	spheric ozone

biogenic; GWP-luluc = Global Warming Potential - land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water deprivation potential, deprivation weighted water consumption

			USE	OF RESOURCE	S			
			1. Manufacturing	2 2 2 2	2. Distribution Stage	3. Installation Stage	4. Use and Maintenance Stage	5. End of Life Stage
INDICATOR	UM	M TOTAL UPSTREAM CORE DOWNSTREAM						
PENRE	MJ	2,09E+06	1,59E+06	6,40E+02	3,39E+04	4,54E+05	8,06E+01	1,04E+04
PERE	MJ	4,31E+05	4,04E+05	1,70E+04	4,50E+01	9,65E+03	1,83E+01	2,77E+02
PENRM	MJ	2,73E+01	2,08E+01	8,38E-03	4,44E-01	5,94E+00	1,05E-03	1,36E-01
PERM	MJ	3,04E+02	2,85E+02	1,20E+01	3,18E-02	6,81E+00	1,29E-02	1,96E-01
PENRT	MJ	2,09E+06	1,59E+06	6,40E+02	3,39E+04	4,54E+05	8,06E+01	1,04E+04
PERT	MJ	4,31E+05	4,04E+05	1,70E+04	4,50E+01	9,66E+03	1,83E+01	2,78E+02
FW	m³	3,59E+03	3,11E+03	9,00E-01	1,98E-01	4,74E+02	3,25E-02	2,22E+00
MS	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00

of renewable primary energy excluding renewable primary energy resources used as raw materials; PENRM = Use of nonrenewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; PERT = Total use of renewable primary energy resources; FW = Use of net fresh water; MS = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels.

	Table 11: Waste production and output flows of AL 145 KV 1200 Spain										
	WASTE PRODUCTION AND OUTPUT FLOWS										
			1. Manufacturing	Stage	2. Distribution Stage	3. Installation Stage	4. Use and Maintenance Stage	5. End of Life Stage			
INDICATO R	UM	TOTAL	UPSTREA M	CORE		DOWNS	TREAM				
HWD	kg	1,40E+01	0,00E+00	2,45E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
NHWD	kg	7,42E+03	0,00E+00	0,00E+00	0,00E+00	3,36E+02	0,00E+00	7,09E+03			
RWD	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
MER	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
MFR	kg	5,94E+03	0,00E+00	5,34E+02	0,00E+00	9,93E+02	0,00E+00	7,14E+03			
CRU	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
ETE	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
EEE	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
	HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; MER = Materials for energy recovery; MFR = Materials for recycling; CRU = Components for reuse; ETE= Exported thermal energy; EEE= Exported electricity										

2. Impact assessment of Al 145kV 1200 Colombia:

Table 12: Impact assessment of Al 145kV 1200 Colombia

			IMPACT A	SSESSMENT				
			1. Manufacturing Stage	0	2. Distribution Stage	3. Installation Stage	4. Use and Maintenance Stage	5. End of Life Stage
INDICATOR	UM	TOTAL	UPSTREAM	CORE	DOWNSTREAM			
GWP – total	kg CO₂eq	1,75E+05	1,42E+05	1,03E+02	3,12E+03	2,08E+04	1,96E+00	9,73E+03
GWP – fossil	kg CO₂eq	1,67E+05	1,42E+05	1,02E+02	3,12E+03	2,05E+04	1,22E+00	1,24E+03
GWP – biogenic	kg CO₂eq	7,67E+03	-5,48E+02	1,05E-01	7,89E-01	2,63E+02	4,34E-01	7,95E+03
GWP – luluc	kg CO₂eq	1,86E+02	1,77E+02	1,37E-02	5,28E-02	8,46E+00	2,67E-01	1,90E-01
ODP	kg CFC-11eq	1,42E-02	1,12E-02	1,29E-05	6,66E-04	2,10E-03	5,85E-08	1,68E-04
POCP	kg NMVOC eq	7,62E+02	6,03E+02	1,74E-01	5,43E+01	9,44E+01	3,45E-03	9,70E+00
AP	mol H⁺eq	2,66E+03	2,47E+03	1,95E-01	7,56E+01	1,00E+02	1,04E-02	6,74E+00
EP- freshw	kg P eq	4,64E+01	4,36E+01	1,65E-02	2,90E-02	2,61E+00	3,07E-04	1,60E-01
WDP	m ³ depriv.	2,36E+05	2,15E+05	3,73E+01	9,68E-01	2,07E+04	1,69E-01	1,81E+01
ADP – fossil	kg Sb eq	1,08E+01	1,08E+01	1,12E-05	1,10E-04	3,23E-03	2,36E-08	6,38E-05
ADP- min&met	MJ	2,31E+06	1,80E+06	6,39E+02	4,14E+04	4,55E+05	1,49E+01	1,15E+04

GWP-total = Global Warming Potential; GWP-fossil = Global Warming Potential - fossil; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential - land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water deprivation potential, deprivation weighted water consumption

USE OF RESOURCES: AI 145kV 1200mm ²								
			1. Manufacturing	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2. Distribution Stage	3. Installation Stage	4. Use and Maintenance Stage	5. End of Life Stage
INDICATOR	UM	TOTAL	UPSTREAM	CORE		DOWN	STREAM	
PENRE	MJ	2,31E+06	1,80E+06	6,39E+02	4,14E+04	4,55E+05	1,49E+01	1,15E+04
PERE	MJ	6,85E+05	6,58E+05	1,70E+04	5,46E+01	9,63E+03	3,84E+01	1,61E+02
PENRM	MJ	4,22E+01	3,29E+01	1,17E-02	7,58E-01	8,32E+00	2,72E-04	2,11E-01
PERM	MJ	3,99E+02	3,84E+02	9,90E+00	3,19E-02	5,62E+00	2,24E-02	9,38E-02
PENRT	MJ	2,31E+06	1,80E+06	6,39E+02	4,14E+04	4,55E+05	1,49E+01	1,15E+04
PERT	MJ	6,85E+05	6,58E+05	1,70E+04	5,46E+01	9,64E+03	3,84E+01	1,61E+02
FW	m³	5,57E+03	5,10E+03	9,02E-01	4,35E-01	4,75E+02	3,89E-02	7,63E-01
MS	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00

Table 13: Use of resources of AI 145kV 1200 Colombia

PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PENRM = Use of nonrenewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; FW = Use of net fresh water; MS = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels.

Table 14: Waste production and output flows of A	Al 145kV 1200 Colombia
--	------------------------

		WASTE PR	ODUCTION AND	OUTPUT FLO	WS Al 145kV 1	200mm ²	-	
			1. Manufacturing Stage		2. Distribution Stage	3. Installation Stage	4. Use and Maintenance Stage	5. End of Life Stage
INDICATOR	UM	TOTAL	UPSTREAM	UPSTREAM CORE DOWNSTREAM				
HWD	kg	2,45E+01	0,00E+00	2,45E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NHWD	kg	1,10E+04	0,00E+00	0,00E+00	0,00E+00	4,39E+02	0,00E+00	1,05E+04
RWD	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MER	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MFR	kg	8,52E+03	0,00E+00	5,78E+02	0,00E+00	2,29E+03	0,00E+00	5,65E+03
CRU	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
ETE	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
EEE	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
			Non-hazardous w	•			•	

energy recovery; MFR = Materials for recycling; CRU = Components for reuse; ETE= Exported thermal energy; EEE= Exported electricity energy.

METHODOLOGY

The methodology followed as a reference standard is that of the Life Cycle Assessment, which considers all environmental aspects and potential environmental impacts along the life cycle of the product, from the extraction and transport of raw materials through manufacture and use, up to at the end of life.

FUNCTIONAL UNIT	The functional unit of the study is 1km of cable with a charge conventionally set at 1A for 40 years and a 100% utilization rate, as determined by the PCR.					
EXCLUSIONS AND CUT OFF	 The impacts from these things are not considered in the present study: production, transport and installation of capital goods (buildings, infrastructures, machinery); production, use and disposal of packaging for individual components and intermediate products; materials and energy flows of the installation and dismantling phases, if these are carried out manually; devices external to the cable itself, necessary for installation; emission in water; cable components whose total mass does not exceed 1,31% of the total weight of Al 145kV 1200mm² Colombia cable and 0,91% of the total weight of the Al 145kV 1200mm² Spain cable. 					
DATA QUALITY	In the context of this study, the activity data are mainly of "primary type", i.e., collected with the support of the Company for the specific production site. Secondary data refer to specific databases or to the most updated technical reference literature, to ensure a good level of reliability. In this study the secondary data that were used concern the installation phase, the use phase, and the end of life of the product.					
REFERENCE PERIOD	The primary data collected in the context of this study refer to the year 2022.					
ALLOCATION	The allocation criteria adopted for the LCA model comply with the reference standards. Most of the primary data used were provided by the client directly referring to the U.F. Some data from the production stage has instead been allocated to the product on the basis of production volumes. In detail, the allocation procedures were applied to the following processes relating to the cable production phase: - Distribution of the cable to the place of destination;					

The following life cycle stages considered in the study:

UPSTREAM E CORE

Manufacturing stage:

- Extraction of raw materials and production of materials / semi-finished / accessory products;
- Packaging production;
- Transport of materials / semi-finished products / accessory products;
- Manufacturing and assembling of the product;
- Waste disposal and recycling.

DOWNSTREAM

Distribution stage: transport of the finished product to the final customer.

Installation stage: The activities included in this phase of the life cycle concern the transport of cables to the installation site, the actual installation and disposal of packaging. Includes excavation operations, production, and processing of the HDPE pipe, and covering the excavation with sand.

Use and maintenance stage: the electrical energy losses of the cables encountered during operation, for the whole duration of their life cycle (40 years).

End of life stage: the transport of the product to the treatment site and the final disposal of the product.

For the disposal scenario, in the Al 145kV 1200 Spain cable the recycling of metal part the reference to the Brazilian statistics were considered (copper: 40% landfill and 60% recycling; aluminum: 30% landfill and 70% recycling) while, for the other component the reference to the Spain statistics were considered (52% landfill, 36,4% recycling and 11,6% incineration).

For the disposal scenario of the cable Al 145kV 1200 Colombia for all the component the reference to the Brazilian statistics were considered (copper: 40% landfill and 60% recycling; aluminum: 30% landfill and 70% recycling; for other waste: 83% landfill, 17% recycling).

Reference	In this LCA study, functional to obtaining the EPD certification, a useful life was
Service Life	considered 40 years, in accordance with the provisions of the reference PCR.
(RSL)	

REFERENCES:

- ISO 14040:2006 Environmental management Life cycle assessment Principles and framework
- ISO 14044:2006 Environmental management Life cycle assessment Requirements and guidelines
- ISO 14020:2000 Environmental labels and declarations -- General principles
- UNI EN ISO 14025:2010, Etichette e dichiarazioni ambientali Dichiarazioni ambientali di Tipo III Principi e procedure
- EN 50693:2019 Product category rules for life cycle assessments of electronic and electrical products and systems
- UNI EN 15804:2012+A1:2013+A2:2019 Sustainability of construction works Environmental product declarations - Core rules for the product category of construction products
- Regolamento EPDItaly rev. 5.2 del 16/02/2022
- PCR EPDItaly007 PCR for electronic and electrical product and systems Rev.3 13/01/2023
- PCR EPDItaly016 PCR for electronic and electrical product and systems Cables and wires Rev.2 25/09/2020
- Report LCA, LCA of 2 underground high voltage electric cables: AL 145 kV 1200mm2 H120 Spain and AL 145 kV 1200mm2 H240 Colombia. Rev 1 January 2024
- Ecoinvent, 2021, The Swiss Centre for Life Cycle Inventories, Ecoinvent v3.8
- SimaPro, <u>https://simapro,com/</u>
- Chen et al. 2019. Life cycle assessment of end-of-life treatments of waste plastics in China
- Cablex-PEAD_Tubi in polietilene alta densità (PEAD) di colore nero per la protezione di cavi nelle condotte interrate. Data sheet
- Power System Operation, 2020. Life Cycle Assessment of Underground Cables
- Documento CONPES 3874 Consejo Nacional de politica económica y social República de Colombia Departamento nacional de Planeación – Bogotá, D.C., 21 de noviembre de 2016
- EPD Prysmian Group: Bare Copper wire Copper Conductor 95 MMQ (CC93)
- EPD Prysmian Group: Underground medium Voltage Cables AL VOLTALENE FLAMEX RH5Z1-OL 1 X240 20KV - AL VOLTALENE FLAMEX RH5Z1-OL 1 X240 – 30KV
- EPD Prysmian Group: MTX CU XLPE 600V ENEL FRICUNI