

ENVIRONMENTAL PRODUCT DECLARATION

HOT-ROLLED REINFORCING STEEL FOR CONCRETE IN **BARS AND COILS**

Based on:

PCR ICMO-001/15 v3

Certification No: EPDITALY0003

Product CPC code:

Date of issue:

2016/04/12

Valid until: 2025/11/16

EN:15804:2012+A2:2019

Update:

Declaration number: 2023/07/31 ADS_EPD_001

UNI EN ISO 14025:2010

GENERAL INFORMATION

EPD REFERENCES

EPD OWNER: ACCIAIERIE DI SICILIA, STRADA PASSO CAVALIERE 1, 95121, CATANIA – ITALY; MANUFACTURING PLANT: CATANIA, ITALY

PROGRAM OPERATOR: EPDITALY, VIA GAETANO DE CASTILLIA 10, 20124 MILANO - ITALY

INDEPENDENT VERIFICATION

This declaration has been developed referring to EPDItaly, following the last version of "Regolamento di EPDItaly"; further information and the document itself are available at: www.epditaly.it

EPD document valid within the following geographical area: Italy and other countries worldwide according to sales market conditions (mainly North Africa and Europe).

CEN standard EN 15804 served as the core PCR (PCR ICMQ-001/15 v3)

PCR review was conducted by Daniele Pace, contact via info@epditaly.it

Independent verification of the declaration and data, according to UNI EN ISO 14025 : 2010

Third party verifier: ICMQ SpA, via De Castillia, 10 20124 Milano (www.icmq.it)

EPD process certification (Internal)

Accredited by: Accredia

Environmental declarations published within the same product category, though originating from different programs, may not be comparable. In particular, EPDs of construction products may not be comparable if they do not comply with EN 15804.

CONTACTS

Alberto Bertino (a.bertino@acciaieriedisicilia.it) Phone: (+39) 338 791 9901

Technical support to Acciaierie di Sicilia was provided by Life Cycle Engineering, Italy. (info@lcengineering.eu, www.lcengineering.eu).

or almost 70 years, the Alfa Acciai Group has been one of the leading Italian and European producers of reinforced concrete steel and wire rod, with 1,200 employees and with a total production capacity of 2.5 million tons per year and today represents a technologically advanced reality, attentive to the environment and present throughout the steel supply chain.

The Group is characterized by a marked industrial flexibility and maximum operational efficiency upstream and downstream of the smelting process, responds successfully to the continuous changes in the national and foreign steel market and to the growing attention of citizens towards environmental issues and always maintains high attention to its collaborators and customers.

ALFA ACCIAI

ALFA ACCIAI, the Brescia-based parent company, is one of the leader and major producer of steel for reinforced concrete and wire rod in Italy and Europe.

The production process in the EAF (electric arc furnace) steel mill sites involves two EAF (electric arc furnaces) followed by 2 LF (ladle furnaces), 2 continuous casting machines (10 lines) and a shredder for proler production. Hot rolling is equipped with two bars and spool mills and a wire rod mill. The production cycle is completed by cold rolling mills that produce welded wire mesh and recoiled wire.

ACCIAIERIA DI SICILIA located in the industrial area of Catania, has been part of the Alfa Acciai Group since 1998, is the only steel mill in Sicily and is located in the heart of the Mediterranean. It is one of the main industrial centers of the Region and is characterized by a strong export vocation thanks to its proximity to significant port infrastructures. The company stands out for its constant technological innovation and steel know-how, factors that guarantee increasingly high-quality standards, respecting the environment and the health and safety of its employees.

The production process includes an EAF (electric arc furnace), a continuous casting machine (4 lines) and a hot rolling mill to produce bars and spool.

Tecnofil

TECNOFIL, located in Gottolengo (BS), has been part of the Alfa Acciai Group since September 2016.

The company is a drawing mill that has the largest galvanizing plant in Italy and among the largest in Europe and completes the production chain of wire rod downstream.

It produces galvanized wires and tapes, , aluzinc and bright wire fzinc aluminum and polished wires for use in construction, household appliances, automotive and numerous other applications of everyday life.

Over the years the company has significantly expanded its overall production capacity (currently over 100,000 tons / year) and the range of products to be offered on the market.

GFERROBERICA

FERRO BERICA has been part of the Alfa Acciai Group since September 2016 and has 4 operational sites located in: Vicenza, Montirone (BS), Catania and Sedegliano (UD).

The company is the largest Italian player (second in Europe) in the pre-shaping and assembly of reinforced concrete bars destinates to the main construction companies for use in structural works.

Ferroberica thanks to the know-how acquired, reliability in supplies, competitiveness on the market and attention to quality and customer care, represents a cutting-edge production reality, equipped with latest generation machinery and with an annual production capacity of more than 300,000 tons.

SCOPE AND TYPE OF EPD

THE APPROACH USED IN THIS EPD IS "CRADLE TO GATE WITH OPTIONS" ONE

TABLE OF MODULES

	PRODUCT STAGE CONSTRUCTION PROCESS STAGE				USE STAGE								END OF L	IFE STAGE	BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES		
	Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse - Recovery - Recycling potential
MODULE	A1	A2	А3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	С3	C4	D
Module declared	Х	Х	Х	х	MND	MND	MND	MND	MND	MND	MND	MND	Х	Х	Х	Х	X
Geography	IT	ΙΤ	IT	WLD	-	-	-	-	-	-	-	-	WLD	WLD	WLD	WLD	WLD
Specific data used		> 90%		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Variation-products	NOT RELEVANT		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Variation-sites	NO	T RELEVA	ANT	-	-	-	-	-	-	-	-	-	-	-	-	-	-

SOFTWARE: SimaPro ver. 9.5. **MAIN DATABASE:** Ecoinvent 3.9.1

REPORT LCA: Life Cycle Assessment (LCA) for hot rolled reinforcing steel for concrete produced by Acciaierie di Sicilia for EPD® purposes - Final Report

GEOGRAPHICAL SCOPE OF THE EPD: World according to sales market conditions

TYPE OF EPD: specific for hot rolled steel products

2. THE PRODUCT

HOT-ROLLED REINFORCING STEEL FOR CONCRETE IN BARS AND COILS

This EPD refers to construction products hot rolled structural steel bars and coils produced at Acciaierie di Sicilia plant placed in Catania (Italy), with electric arc furnace technology starting from post and pre consumer steel scraps. The homogeneous and repeatable mechanical features of steel guarantee excellent performance in any type of construction and geographical area, since they have high ductility.

EPD reference products have a chemical composition in compliance with national regulation of destination countries where they are sent. In general, the main materials of the final product are: *iron* > 97%; *alloy elements* (e.g. manganese, silicon, carbon) 2% c.a.; other elements (e.g.. copper, nickel, chromium), complementary to 100%.

Declared Unit

According to EN:15804, the declared unit is 1 ton of hot rolled product

INFORMATION	DESCRIPTION							
Product identification	Hot-rolled reinforcing steel for concrete in bars and coils							
Product features	Bars: Diameters from 6 mm to 32 mm Length up to 18 m Weight: up to 2 300 kg Coils: Diameters from 6 to 16 mm Weight from 1450 to 3 000 kg							
	Steel coming from post and pre consumer steel scraps produced in electric arc furnace route (EAF) and further hot rolling process.							
	Adherence and surface geometry f_R or f_p : - for $5 \le \emptyset \le 6$ mm f_R or f_p 0.035; - for $6 < \emptyset \le 12$ mm f_R or f_p 0.040; - for $\emptyset > 12$ mm f_R or f_p 0.056.							
Product properties	Weldability: C _{eq} < 0.52							
(under EN10080:2005)	Typical yield stress: 400 MPa ≤ Cv ≤ 600 MPa							
	Elongation: Agt > 5%							
	Successful in bend and rebend test							
	Content of recycled materials ≥ 99% (Certified by ICMQ SpA following UNI/PdR 88:2020)							
	Successful in strength test and oligocyclic strength test							
	Total production of EPD covered products, year 2022: 268 905 t							
	Total production, for selling purpose, year 2022: 268 905 t							
	On-site air emission control system							
Plant features	On-site waste water control system							
	On-site system to recycle water used in process							
	In/out materials/products and melting process monitored to prevent nuclear radiation							
	Plant air emissions accounted under ETS (Emission Trading System)							

ENVIRONMENTAL PERFORMANCE

The detailed environmental performance (in terms of use of resources, pollutant emissions and waste generation) is presented for the three phases, <u>Upstream</u>, <u>Core</u> and <u>Downstream</u> and related sub-phases (A1-A2-A3-A4-C1-C2-C3-C4-D). The numbers reported in the following tables are the outcome of rounding. For this reason total results could slightly differ from the sum of contributions of the different phases. The energy sources behind the electricity grid used in manufacturing is the italian residual mix 0,457 kg CO₂ eq./kWh (AIB report May 2023) to which LCE adds emissions related to network losses and transformation.

ENVIRONMENTAL IMPACTS													
TABLE OF		UPSTREAM CORE PROCESS					DOWNSTREAM						
MODULES POTENTIAL ENVIRONMENTAL IMPACTS	UNITS / D.U.	A1	A2	A3	A1:A3	A4	C1	C2	C3	C4	D		
GWP	kg CO ₂ eq	5,61E+02	6,45E+00	1,21E+02	6,88E+02	3,32E+01	5,38E+01	1,82E+01	2,36E+00	2,78E-01	1,54E+02		
GWP,f	kg CO ₂ eq	5,61E+02	6,45E+00	1,20E+02	6,87E+02	3,32E+01	5,38E+01	1,82E+01	2,35E+00	2,78E-01	1,54E+02		
GWP,b	kg CO ₂ eq	2,53E-01	4,73E-04	1,85E-01	4,38E-01	2,37E-03	3,94E-03	1,34E-03	7,09E-03	3,59E-05	1,44E-02		
GWP,luluc	kg CO ₂ eq	1,48E-01	1,26E-04	6,86E-02	2,17E-01	7,12E-04	2,16E-03	3,52E-04	5,79E-03	1,36E-05	1,41E-02		
GWP,ghg	kg CO ₂ eq	5,61E+02	6,45E+00	1,21E+02	6,88E+02	3,32E+01	5,38E+01	1,82E+01	2,36E+00	2,78E-01	1,54E+02		
ODP	kg CFC11 eq	1,34E-05	1,37E-07	5,87E-07	1,41E-05	6,75E-07	8,29E-07	3,88E-07	1,44E-08	4,02E-09	2,77E-06		
AP	mol H+ eq	1,88E+00	1,50E-02	3,60E-01	2,26E+00	2,13E-01	5,04E-01	3,59E-02	1,12E-02	2,51E-03	5,73E-01		
EP,f	kg P eq	1,04E-02	4,99E-06	2,73E-03	1,32E-02	2,54E-05	4,50E-05	1,41E-05	1,16E-04	9,54E-07	6,48E-03		
EP,m	kg N eq	3,64E-01	5,02E-03	5,31E-02	4,23E-01	5,89E-02	2,37E-01	1,26E-02	2,16E-03	1,14E-03	1,13E-01		
EP,t	mol N eq	4,06E+00	5,26E-02	5,80E-01	4,70E+00	6,39E-01	2,57E+00	1,31E-01	2,38E-02	1,24E-02	1,31E+00		
POCP	kg NMVOC eq	1,76E+00	2,30E-02	1,86E-01	1,97E+00	2,09E-01	7,57E-01	6,06E-02	7,15E-03	3,71E-03	7,00E-01		
ADPE*	kg Sb eq	2,28E-04	2,17E-07	2,41E-06	2,31E-04	1,01E-06	2,21E-06	6,18E-07	6,57E-08	1,07E-08	1,30E-03		
ADPF*	MJ	9,47E+03	8,30E+01	8,33E+02	1,04E+04	4,23E+02	6,80E+02	2,35E+02	3,96E+01	3,48E+00	1,88E+03		
WDP*	m³	3,49E+01	7,77E-02	9,36E+01	1,29E+02	3,94E-01	8,92E-01	2,20E-01	4,19E-01	4,82E-03	1,80E+01		

Additional environmental impact indicators are computed in the LCA report but not reported in the EPD.

*The results of this enviromental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

GWP Global warming potential, total

GWP, **f** Global warming potential, fossil

GWP,b Global warming potential, biogenic

GWP, luluc Global warming potential, land use & land use change

ODP Ozone depletion potential

AP Acidification Potential

EP,f Eutrophication potential, freshwater

EP,m Eutrophication potential, marine

EP,t Eutrophication potential, terrestrial

POCP Photochemical ozone creation potential

ADPE Abiotic depletion potential minerals & metals

ADPF Abiotic depletion potential fossil fuels

WDP Water use deprivation potential

RESOURCE USE PER DECLARED UNIT												
USE OF RENEWABLE MATERIAL RESOURCES		UPSTREAM	CORE PROCESS				DOWNSTREAM					
	UNITS / D.U.	A1	A2	A3 A1:A3	A1:A3	A4	C1	C2	C3	C4	D	
		0-0		111		00 0		00 0			<u>~</u>	
PERE	[MJ]	4,81E+02	2,21E-01	1,24E+02	6,04E+02	1,07E+00	1,35E+00	6,28E-01	4,34E+00	1,55E-02	1,06E+02	
PERM	[MJ]	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	
PERT	[MJ]	4,81E+02	2,21E-01	1,24E+02	6,04E+02	1,07E+00	1,35E+00	6,28E-01	4,34E+00	1,55E-02	1,06E+02	
PENRE	[MJ]	9,52E+03	8,54E+01	7,17E+02	1,03E+04	4,35E+02	7,00E+02	2,42E+02	4,01E+01	3,57E+00	1,89E+03	
PENRM	[MJ]	0,00E+00	0,00E+00	1,29E+02	1,29E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	
PENRT	[MJ]	9,52E+03	8,54E+01	8,45E+02	1,05E+04	4,35E+02	7,00E+02	2,42E+02	4,01E+01	3,57E+00	1,89E+03	
SM	[kg]	1,38E+03	0,00E+00	0,00E+00	1,38E+03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	
RSF	[MJ]	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	
NRSF	[MJ]	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	
FW	[m³]	1,15E+00	3,53E-03	2,49E+00	3,65E+00	1,78E-02	3,44E-02	1,00E-02	1,76E-02	1,82E-04	3,60E-01	

PERE Use of renewable primary energy excluding renewable primary energy resources used as raw materials

PERM Use of renewable primary energy resources used as raw materials

PERT Total use of renewable primary energy resources

PENRE Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials

PENRM Use of non-renewable primary energy resources used as raw materials

PENRT Total use of non-renewable primary energy resources

SM Use of secondary raw materials

RSF Use of renewable secondary fuels

NRSF Use of non-renewable secondary fuels

FW Use of net fresh water

OUTPUT FLOWS AND WASTE CATEGORIES												
WASTE GENERATION AND TREATMENT	UNITS / D.U.	UPSTREAM	CORE P	ROCESS			DOWNSTREAM					
		A1	A2	А3	A1:A3	A4	C1	C2	C3	C4	D	
		0-0		11				00 0			<u>~</u>	
HWD	[kg]	0,00E+00	0,00E+00	1,52E-02	1,52E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	
NHWD	[kg]	0,00E+00	0,00E+00	1,10E+02	1,10E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,00E+02	0,00E+00	
RWD	[kg]	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	
CRU	[kg]	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	
MFR	[kg]	0,00E+00	0,00E+00	1,27E+02	1,27E+02	0,00E+00	0,00E+00	0,00E+00	9,00E+02	0,00E+00	0,00E+00	
MER	[kg]	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	
EE	[MJ]	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	

3. CALCULATION RULES

The environmental burden of the product has been calculated according to EN 15804:2012+A2:2019 and PCR ICMQ-001/15 v3.

This declaration is a cradle to gate with options EPD type, based on the application of Life Cycle Assessment (LCA) methodology to the whole life-cycle system.

In the whole LCA model, infrastructures and production equipments are not taken into account.

Hot rolled steel products at plant level were described by using specific data from manufacturing facility (Catania, Italy) for year 2022.

Customized LCA questionnaires were used to gather in-depth information about all aspects of the production system (raw materials contents and specifications, pre treatments, process efficiencies, air and water emissions, waste management), in order to provide a complete picture of the environmental burden of the system from manufacturing up to end of life.

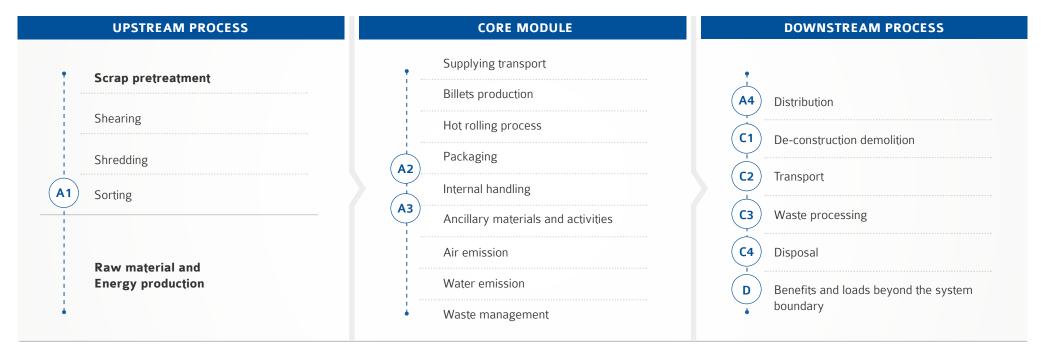
The use phase was not considered according to EN:15804 and PCR ICMQ-001/15 v3, while transport to final destination (A4) and end of life (C1-C2-C3-C4-D) were included. The product is designed for being incorporated into concrete structures. Therefore, in nominal installation and operating conditions, no emissions to air nor to water shall occur.

According to ISO 14040 and 14044, allocation is avoided whenever possible by dividing the system into subsystems. When allocation cannot be avoided physical properties are used to drive flow analysis.

Data quality has been assessed and validated during data collection process.

According to EN:15804 the applied cut-off criterion for mass and energy flows is 1%.

¹EN 15804:2012+A2:2019 Sustainability of construction works - Environmental product declarations Core rules for the product category of construction products.



4. SCENARIOS AND ADDITIONAL TECHNICAL INFORMATION

Broad scheme of hot-rolled reinforcing steel for concrete production, in which the main activities included in the system boundaries, are listed and divided in the three subsystems: **UPSTREAM** Process, **CORE** Module and **DOWNSTREAM** Process.

UPSTREAM PROCESS

CORE

DOWNSTREAM

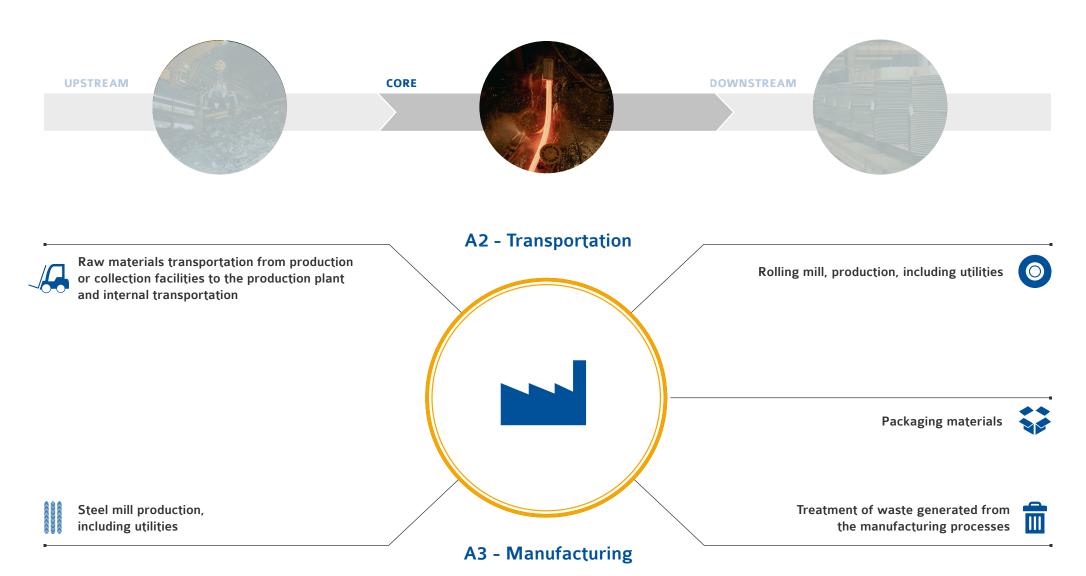
Scheme of the considered system boundaries (upstream processes).

Steel scrap collection (shredded both in external and internal plants) and other raw materials production

Production of alloy elements

Specific secondary materials pre-treatments, where appropriate

A1 - Raw Materials Supply


Generation of electricity and other fuels from primary and from secondary energy resources (excluding waste treatments)

CORE PROCESS

DOWNSTREAM PROCESS

CORE

DOWNSTREAM

A4 Distribution

Transport to the customers (general market average). Distances estimated considering the transported quantities and the distances from Catania plant to the client. From Catania (in the South of Italy) final products are delivered to many national (64% of the total sold product) and international areas such as Cyprus (around 16%), Romania and Greece mentioning the main countries. The means of transport used to deliver steel bars and coils are truck and freight ship.

C1 De-construction demolition

Dismantling and demolition operations required to remove the product from the building. Initial onsite sorting of the materials is included as well.

C2 Transport

Transportation of the discarded product as part of the waste processing (to recycling site or to a final disposal site).

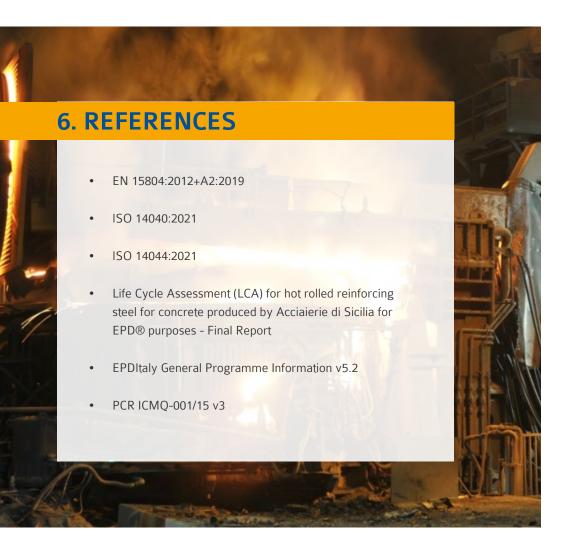
C3 Waste processing

Waste processing, including collection of waste fraction from deconstruction and waste processing of material flows intended for reuse, recycling and energy recovery.

C4 Disposal

Waste disposal including physical pre-treatment and management of the disposal site.

D Benefits and loads beyond system boundary


Environmental impacts associated to waste use after the investigated system (including recycling).

In this module impacts arising from steel recycling are accounted, including avoided impacts associated to primary steel production. The result is expressed as net value between direct impact (i.e. recycling steel in EAF furnace) and avoided impact (i.e. producing steel from iron ore in BOF furnace).

5. OTHER OPTIONAL ADDITIONAL ENVIRONMENTAL INFORMATION

Other environmental characteristics of Acciaierie di Sicilia plant are:

- 1. Acciaierie di Sicilia reinforcing steel in bars and coils production capacity is around 500,000 t per year. The main peculiarity is that ferrous scrap is mainly collected from Sicily (about 90%).
- 2. Acciaierie di Sicilia features the best available technologies in term off-gas filtering system with activated carbon injection, innovative pulse-jet cleaning system to guarantee enhanced environmental performance.
- 3. Acciaierie di Sicilia is equipped with radiometric monitoring instruments to prevent radioactive-contaminated in the incoming raw materials and throughout the entire production process.

Content of recycled materials ≥ 99% (Certified by ICMQ following UNI/PdR 88:2020)

