

EPD

Environmental Product Declaration

VD4/SFU 24.06.12 DY501/1 VD4/SFU 24.12.12 DY501/3 VD4/SFU 24.25.12 DY501/4

Production site: Dalmine, Italy

DOCUMENT KIND	IN COMPLIANCE WITH	IN COMPLIANCE WITH		
Environmental Product Declaration	ISO 14025 and EN50693	ISO 14025 and EN50693		
PROGRAM OPERATOR	PUBLISHER			
EPDItaly	EPDItaly	EPDItaly		
EPDITALY REGISTRATION NUMBER	ISSUE DATE			
EPDITALY0326	2022-09-24			
VALID TO	STATUS	STATUS SECURITY LEVEL		
2027-09-24	Approved	Approved Public		
OWNING ORGANIZATION	DECLARATION NUMBER	REV.	LANG.	PAGE
ABB Switzerland Ltd, Group Technology Management	2RDA044890 A en 1/20			

EPD Owner	ABB Switzerland Ltd, Group Technology Management
Manufacturer name and address	ABB S.p.A. Via Friuli, 4, 24044 Dalmine, Bergamo (Italy)
Organization no	CHE-101.538.426
Company Contact	Seila Rodriguez Vilches – seila.rodriguez-vilches@ch.abb.com Sustainability Product Manager
Program operator	EPDItaly – info@epditaly.it Via Gaetano De Castillia n° 10 - 20124 Milano, Italia
Declared product & Functional unit or declared unit	VD4/SFU 24.06.12 DY501/1 VD4/SFU 24.12.12 DY501/3 VD4/SFU 24.25.12 DY501/4 FU: single circuit breaker, which establishes or interrupts the electrical continuity of the circuit to which it is applied, during a service of 20 years, including related accessories and packaging.
Product Description	VD4 breakers are used in electrical distribution for control and protection of cables, overhead lines, distribution substations, motors, transformers, generators and capacitor banks. The scope of the medium voltage circuit breakers is to interrupt an electric current with a mechanical actuator.
CPC code	46211 - Electrical apparatus for switching or protecting electrical circuits, or for making connections to or in electrical circuits, for a voltage exceeding 1000 $\rm V$
Independent verification	This declaration has been developed referring to EPDItaly, following the "Regolamento di EPDItaly"; further information and the document itself are available at: www.epditaly.it. EPD document valid within the following geographical area: Italy and other countries worldwide according to sales market conditions. Independent verification of the declaration and data was carried out according to ISO 14025: 2010. □ INTERNAL ☑ EXTERNAL Third-party verification carried out by: ICMQ spa Accredited by: ACCREDIA
Reference PCR and version number	Core PCR: EPDItaly007 – PCR for Electronic and Electrical Products and Systems, Rev. 2, 2020/10/21. Sub PCR: EPDItaly012 - Electronic and electrical products and systems – Switches, Rev. 0, 2020/03/16.
Other reference documents	EN 50693:2019 - Product category rules for life cycle assessments of electronic and electrical products and systems Regulations of the EPDItaly Programme rev. 5.2 (16 February 2022)
Product RSL description	20 years
Markets of applicability	World (raw materials), Italy (production, use and end-of-life)
LCA study	This EPD is based on the LCA study described in the LCA report 2RDA044876.
EPD type	Product specific
EPD scope	"Cradle to grave"
Year of reported primary data	2021
LCA software	SimaPro 9.3.0.3 (2021)

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE	
Approved	Public	2RDA044890	Α	en	2/20	
© Convigate 2022 ARR All rights reserved						

LCI database	ecoinvent v3.8 (2021)
LCIA methodology	EN 50693:2019
Author of the life cycle assessment	Luca Marcolongo – luca.marcolongo@it.abb.com Environmental Specialist
Comparability	EPDs published within the same product category, though originating from different programs, may not be comparable. Full conformance with a PCR allows EPD comparability only when all stages of a life cycle have been considered. However, variations and deviations are possible.
Liability	EPDItaly declines any responsibility regarding the manufacturer's information, data and results of the life cycle assessment.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	2RDA044890	A	en	3/20
© Copyright 2022 APP All rights recovered					

Contents

ABB Purpose & Embedding Sustainability	5
General Information	
Constituent materials	
LCA background information	
Inventory analysis	13
Environmental indicators	15
References	20

ABB Purpose & Embedding Sustainability

ABB is a leading global technology company that energizes the transformation of society and industry to achieve a more productive, sustainable future. By connecting software to its electrification, robotics, automation and motion portfolio, ABB pushes the boundaries of technology to drive performance to new levels. With a history of excellence stretching back more than 130 years, ABB's success is driven by about 110 thousand talented employees in over 100 countries.

ABB's Electrification business offers a wide-ranging portfolio of products, digital solutions and services, from the substation to the socket, enabling safe, smart and sustainable electrification. Offerings encompass digital and connected innovations for low and medium voltage, including EV infrastructure, solar inverters, modular substations, distribution automation, power protection, wiring accessories, switchgear, enclosures, cabling, sensing and control.

ABB is committed to continually promoting and embedding sustainability across its operations and value chain, aspiring to become a role model for others to follow. With its ABB Purpose, ABB is focusing on reducing harmful emissions, preserving natural resources and championing ethical and humane behavior.

Figure 1 ABB Dalmine

			Γ'		5, 20
Approved	Public	2RDA044890	Α	en	5/20
STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE

General Information

ABB S.p.A Electrification Distribution Solutions facility in Dalmine (ELDS Division) produces medium voltage circuit breakers, disconnectors, and contactors, medium voltage switchboards for primary and secondary distribution, low voltage switchboards, complete packages and services for substations. Smart systems and technologies for electrical distribution are supplied to utilities, industrial, and tertiary sector customers. Dalmine exports 85% of the volumes produced.

ABB ELDS division, Italy adopts and implements for its own activities an integrated Quality/Environmental/Health Management System in compliance with the following standards:

- UNI EN ISO 9001/2015 Quality Management Systems- Requirements
- UNI EN ISO 14001/2015 Environmental Management Systems-Requirements
- UNI EN ISO 45001:2018 Occupational Health and Safety Management System

The manufacturing of circuit breakers is located in ABB facility of Dalmine, Italy.

In the factory, the different components and subassemblies are assembled on the socalled One Primary Line and a final assembly stage within the Speciali area. All components and subassemblies are produced by ABB's suppliers and are only assembled in the factory.

Product DY501 cluster declared in this EPD includes the following device:

Technical specifications are as follows:

Circuit breaker	VD4/SFU 24.06.12 DY501/1	VD4/SFU 24.12.12 DY501/3	VD4/SFU 24.25.12 DY501/4
Rated voltage [kV]	24	24	24
Rated current [A]	630	1250	2500
Rated short circuit breaking current [kA]	12	12	12
Number of poles	3	3	3

The accessories associated with these products are also included in the study.

VD4 circuit breakers are used in electrical distribution for control and protection of cables, overhead lines, distribution substations, motors, transformers, generators and capacitor banks. The scope of the medium voltage circuit breakers is to interrupt an electric current with a mechanical actuator (spring mechanism).

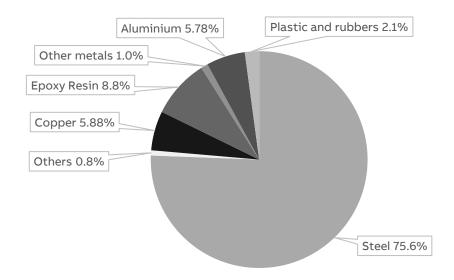
STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	2RDA044890	A	en	6/20
© Copyright 2022 ABB. All rights reserve	d.				

Constituent materials

The VD4/SFU 24.06.12 DY501/1 mass considered in this study is 185.1 kg. Some small parts were excluded because of lack of data, as their mass is estimated to be well below 2% of the total weight, according to the EPDItaly-012 cut-off criteria.

VD4/SFU 24.06.12 DY501/1						
Materials	Name	CAS Number	Weight [kg]	%		
Plastics	Plastics and rubber		3.46	1.9		
	Steel	7439-89-6	142	76.7		
Metals	Copper	7440-50-8	10	5.4		
Metais	Aluminium	7429-90-5	9.88	5.3		
	Other metals		1.97	1.1		
Others	Epoxy Resin	25085-99-8	16.56	8.9		
Others	Others		1.22	0.7		
Total			185.1	100		

VD4/SFU 24.06.12 DY501/1

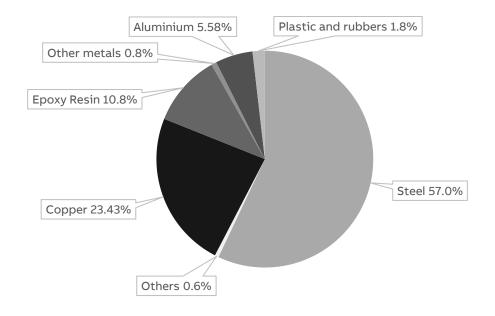


STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE	
Approved	Public	2RDA044890	Α	en	7/20	
© Convright 2022 ARR All rights reserved						

The VD4/SFU 24.12.12 DY501/3 mass considered in this study is 188.2 kg. Some small parts were excluded because of lack of data, as their mass is estimated to be well below 2% of the total weight, according to the EPDItaly-012 cut-off criteria.

	VD4/SFU 24.	12.12 DY501/3		
Materials	Name	CAS Number	Weight [kg]	%
Plastics	Plastics and rubber		4.01	2.1
	Steel	7439-89-6	142.25	75.6
Metals	Copper	7440-50-8	11.06	5.9
Metais	Aluminium	7429-90-5	10.88	5.8
	Other metals		1.96	1
Others	Epoxy Resin	25085-99-8	16.56	8.8
Others	Others		1.46	0.8
Total			188.2	100

VD4/SFU 24.12.12 DY501/3



STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	2RDA044890	Α	en	8/20		
© Convright 2022 ARR All rights reserved							

The **VD4/SFU 24.25.12 DY501/4** mass considered in this study is 250.8 kg. Some small parts were excluded because of lack of data, as their mass is estimated to be well below 2% of the total weight, according to the EPDItaly-012 cut-off criteria.

VD4/SFU 24.25.12 DY501/4										
Materials	Name	CAS Number	Weight [kg]	%						
Plastics	Plastics and rubber		4.57	1.8						
	Steel	7439-89-6	143.06	57						
Metals	Copper	7440-50-8	58.77	23.4						
Metais	Aluminium	7429-90-5	13.99	5.6						
	Other metals		1.96	0.8						
Others	Epoxy Resin	25085-99-8	27	10.8						
Others	Others		1.46	0.6						
Total			250.8	100						

VD4/SFU 24.25.12 DY501/4

The packaging is composed of a wooden cage of 91.58 kg.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	2RDA044890	Α	en	9/20		
© Copyright 2022 ABB. All rights reserved.							

LCA background information

Functional Unit

The functional unit is a single VD4 circuit breaker, which establishes or interrupts the electrical continuity of the circuit to which it is applied, during a service of 20 years, including related accessories and packaging.

System Boundaries

The life cycle of the medium voltage circuit breaker, an EEPS (Electronic and Electrical Products and Systems), is a "from cradle to grave" analysis and covers the following main life cycle stages: manufacturing, including the relevant upstream process (e.g. acquisition of raw material, preparation of semi-finished goods, etc.) and the main manufacturing and processing steps; distribution; installation, including the relevant steps for the preparation of the product for use; use including the required maintenance steps within the RSL (reference service life of the product) associated to the reference product; end-of-life stage, including the necessary steps until final disposal or recovery of the product system.

The following table shows the stages of the product life cycle and the information stages according to EN 50693 for the evaluation of electronic and electrical products and systems.

The stages of the product life cycle and the information considered for the evaluation of the cluster VD4 are:

- Manufacturing upstream includes raw materials, and production activities of ABB suppliers, including transport of semi-finished items and subassemblies to ABB Dalmine.
- Manufacturing core includes local consumptions (ABB Dalmine) due to manufacturing of the products (VD4) the relevant assembling and waste due to manufacturing. This includes also packaging production.
- Distribution stage includes the impacts related to the distribution of the product at the installation site.
- Installation stage includes the end of life of the packaging.
- Use and maintenance stages include the impact related to energy consumption during the service life of the product.
- End of life includes the operations for the disposal of the product at the end of its service life.

Approved	Public	2RDA044890	A	en	10/20		
STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		

Temporal and geographical boundaries

The component suppliers are sourced all over the world: Africa, Asia and Europe. All primary data collected from ABB are from 2021, which is a representative production year. Secondary data are provided by ecoinvent v3.8.

The selected ecoinvent processes in the LCA model have global representativeness, due to the unclear origin of each component. In this way, a conservative approach has been adopted.

The results of this study are only applicable to VD4/SFU circuit breakers produced in Dalmine in 2021.

Boundaries in the life cycle

Capital goods, such as buildings, machinery, tools and infrastructure, the packaging for internal transport which cannot be allocated directly to the production of the reference product, may be excluded from the system boundary.

Infrastructures, when present, such as processes deriving from the ecoinvent database have not been excluded.

Data quality

In this EPD, both primary and secondary data are used. Site-specific foreground data have been provided by ABB. The main data sources are the bill of materials available on the enterprise resource planning. For all processes for which primary are not available, generic data originating from the ecoinvent v3.8 database, allocation cut-off by classification, are used. The ecoinvent database is available in the SimaPro 9.3.0.3 software used for the calculations.

Environmental impact indicators

The information obtained from the inventory analysis is aggregated according to the effects related to the various environmental issues. According to PCR EPDItaly012 and EN 50693 the environmental impact indicators must be determined using the characterization factors and impact assessment methods specified in EN 15804:2012+A2:2019.

PCR EPDItaly012 and the EN 50693 standard establish four indicators for climate impact (GWP-GHG): GWP (total) which includes all greenhouse gases; GWP (fossil fuels); GWP (biogenic carbon) which includes the emissions and absorption of biogenic carbon dioxide and biogenic carbon stored in the product; GWP (land use).

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	2RDA044890	A	en	11/20		
a Constitutional ADD All States and all							

Allocation rules

An allocation key is used for consumption related to the manufacturing process in the production site, as well as for company waste.

Allocation coefficients are based on the one primary line's and Speciali surface area for methane and water consumption. Allocation coefficient for waste generated is based on the apparatus line surface area. Electricity consumption has direct measurement data for apparatus line and is divided by the total production volume in 2021. Concerning end-of-life allocation, the "cut-off" approach has been applied. As a result, the ecoinvent database "allocation, cut-off by classification" has been applied. With this approach, outputs subject to recycling are considered as inputs to the next life cycle, and neither environmental burdens nor environmental gains deriving from the recycling process are allocated to the waste stream.

Limitations and simplifications

The raw material life cycle stage includes the extraction of raw materials but neglects the production of various components at ABB's suppliers (e.g., glue, grease, and adhesive), as their mass represent less than 2% of that of the whole medium voltage circuit breaker, as stated in the paragraph of cut-off criteria of EPDItaly-012: "Materials making up the switch itself whose total mass does not exceed 2% of the total weight of the device".

This same applies to packaging, where small parts such as screws and fasteners are even a smaller fraction of the total mass. Also sticking labels and grease have been excluded since they are negligible.

Surface treatments like zinc coating, silver plating and painting have been considered in the LCA model. The silver plating of the bushings was assumed to be one-third of the total surface area of the component, based on the fact that only the ends are involved in the process Burnishing galvanizing surface and phosphated and oiled treatments have been excluded by operational choice.

Scraps for metalworking and plastic processes are included when already defined in ecoinvent.

Approved	Public	2RDA044890	A	en	12/20
STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE

Inventory analysis

The ecoinvent v3.8 cut-off by classification system processes are used to model the background system of the processes. In addition, polyoxymethylene was taken from the database Industry Data 2.0, as it is not present in ecoinvent database. Secondary material constitutes are taken from ecoinvent database.

Due to the large amounts of components in the medium voltage circuit breaker, raw material inputs are modeled with data from ecoinvent representing a global market coverage. These datasets are assumed to be representative.

Manufacturing stage

Steel is the most used material, followed by copper and epoxy resin in different proportions for the various circuit breakers. Stainless steel parts are modelled with *Steel, chromium steel 18/8 [GLO]| market for | Cut-off, S.* All other steel components (hot rolled, cold rolled, galvanized, low-alloyed steel) are modeled with the same kind of steel: *Steel, low-alloyed [GLO]| market for,* as it is representative of the large majority of the steel parts.

The single-use packaging is also included in the analysis in the manufacturing core stage. ABB receives packaging components from outside suppliers and packages circuit breaker before shipping them.

The distance from the subassembly manufacturing factory to ABB facility is calculated.

The manufacturing of the medium voltage circuit breaker is located in ABB facility of Dalmine, Italy. In the factory, the different components and subassemblies are assembled into the circuit breaker.

The energy mix used for the production phase is representative for Dalmine production site and includes green energy only (hydroelectric 62%, wind 16% and photovoltaic 6% and internal production photovoltaic 16%).

The waste generated by the production and assembly processes is included in the calculation.

The negative impact of biogenic climate change in the manufacturing core phase is due to wood packaging, derive from plants that absorb CO2 during growth.

Distribution

The transport distances from ABB plant to the place of use are assumed to be 300 km.

Installation

The installation phase only implies manual activities, and no energy is consumed. This phase also includes the disposal of the packaging of the medium voltage circuit breaker.

The end-of-life stage is modeled according to ISPRA. The percentages for end-of-life treatments of circuit breaker are taken from ISPRA.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	2RDA044890	A	en	13/20		
© Constitute 2022 ADD All sinks accounted							

Use

Use and maintenance are modelled according to the PCR EPDItaly012 – Switches, for the circuit breaker.

For the use phase, the general Italian medium voltage electricity mix from ecoinvent v3.8 is used.

During the use phase, the VD4 dissipates some electricity due to ohmic losses. They are calculated according to the own internal resistance of the circuit breaker and the following PCR rules:

- nominal current reduced by a factor of 0.5;
- RSL of 20 years;
- functioning time of 30% of the RSL.

The formula for the calculation of the electricity consumed is shown in sub-PCR EPDItaly012 and it is described as follow, where P_{use} is the power consumed by the circuit breaker at a given value of current:

$$E_{use} [kWh] = \frac{P_{use} * 8760 * RSL * \alpha}{1000}$$

	VD4/SFU DY501/1	VD4/SFU DY501/3	VD4/SFU DY501/4
Nominal current [A]	630	1250	2500
P _{use} [W]	17.25	39.48	86.31
E _{use} [kWh]	906.58	2075.05	4536.59

Since no maintenance happens during the use phase, the environmental impacts linked to this procedure are omitted from the analysis.

End of life

The transport distances from the place of use to the place of disposal are assumed to be 100 km.

The end-of-life stage is modeled according to IEC/TR 62635. The percentages for end-of-life treatments of circuit breakers are taken from IEC/TR 62635.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	2RDA044890	Α	en	14/20		
© Constitute 2022 ARR All sinks accounted							

Environmental indicators

The following tables show the environmental impact indicators of the life cycle of a single circuit breaker, as indicated by PCR EPDItaly012 and EN 50693:2019.

The indicators are divided into the contribution of the processes to the different modules (upstream, core and downstream) and stages (manufacturing, distribution, installation, use and end-of-life).

VD4/SFU 24.06.12 DY501/1

			UPSTREAM	CORE		DOWNSTRE	AM	
Impact category	Unit	Total	Manufact	uring	Distribution	Installation	Use	End of life
GWP - total	kg CO₂ eq.	1.47E+03	1.08E+03	-5.46E+01	1.37E+01	2.61E+01	3.95E+02	3.38E+00
GWP - fossil	kg CO₂ eq.	1.50E+03	1.05E+03	7.25E+01	1.37E+01	1.93E+00	3.62E+02	3.38E+00
GWP - biogenic	kg CO₂ eq.	-3.79E+01	3.23E+01	-1.27E+02	1.24E-02	2.41E+01	3.29E+01	5.16E-03
GWP - luluc	kg CO₂ eq.	1.66E+00	1.50E+00	1.10E-01	5.42E-03	8.65E-04	4.69E-02	1.27E-03
ODP	kg CFC-11 eq.	1.39E-04	7.49E-05	1.01E-05	3.19E-06	4.23E-07	4.99E-05	7.46E-07
АР	mol H⁺ eq.	1.56E+01	1.36E+01	1.69E-01	6.93E-02	1.17E-02	1.67E+00	1.63E-02
EP - freshwater	kg P eq.	1.18E+00	1.08E+00	6.62E-03	8.89E-04	2.42E-04	8.36E-02	2.07E-04
POCP	kg NMVOC eq.	5.94E+00	4.87E+00	1.67E-01	7.44E-02	1.34E-02	7.94E-01	1.76E-02
ADP – minerals and metals	kg Sb eq.	2.44E-01	2.43E-01	1.29E-04	4.80E-05	6.48E-06	7.93E-04	1.10E-05
ADP – fossil	MJ, net calorific value	2.00E+04	1.30E+04	1.16E+03	2.08E+02	2.93E+01	5.55E+03	4.89E+01
WDP	m³ eq.	6.15E+02	3.73E+02	5.15E+00	6.28E-01	8.21E-02	2.36E+02	2.15E-01

GWP-fossil: Global Warming Potential fossil; GWP-biogenic: Global Warming Potential biogenic; GWP-luluc: Global Warming Potential land use and land use change; ODP: Depletion potential of the stratospheric ozone layer; AP: Acidification potential; EP-freshwater: Eutrophication potential-freshwater compartment; POCP: Formation potential of tropospheric ozone; ADPminerals & metals: Abiotic Depletion for non-fossil resources potential; ADP-fossil: Abiotic Depletion for fossil resources potential, WDP: Water deprivation potential.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	2RDA044890	Α	en	15/20		
© Converight 2022 ADD All rights recovered							

Resource	11-2	T 1	UPSTREAM	CORE		DOWNST	REAM	
use parameters	Unit	Total	Manufac	turing	Distribution	Installation	Use	End of life
PENRE	MJ, low cal. value	1.99E+04	1.29E+04	1.16E+03	2.08E+02	2.93E+01	5.55E+03	4.89E+01
PERE	MJ, low cal. value	3.99E+03	1.43E+03	1.12E+03	2.94E+00	4.51E-01	1.44E+03	7.46E-01
PENRM	MJ, low cal. value	1.13E+02	1.13E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERM	MJ, low cal. value	1.71E+03	0.00E+00	1.71E+03	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	MJ, low cal. value	2.00E+04	1.30E+04	1.16E+03	2.08E+02	2.93E+01	5.55E+03	4.89E+01
PERT	MJ, low cal. value	5.69E+03	1.43E+03	2.82E+03	2.94E+00	4.51E-01	1.44E+03	7.46E-01
FW	m³	1.82E+01	1.15E+01	1.60E-01	2.32E-02	3.86E-03	6.52E+00	7.88E-03
MS	kg	5.31E+01	5.31E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	МЈ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	МЈ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

PENRE: Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw material; PERE: Use of renewable primary energy excluding renewable primary energy resources used as raw material; PENRM: Use of non-renewable primary energy resources used as raw material; PERM: Use of renewable primary energy resources used as raw material; PENRT: Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); FW: Net use of fresh water; MS: Use of secondary materials; RFS: Use of renewable secondary fuels, NRSF: Use of non-renewable secondary fuels.

Waste	Waste production Unit	Total	UPSTREAM	CORE		DOWNSTREAM				
indicators	Onic	iotai	Manufacturing		Distribution	Installation	Use	End of life		
HWD	kg	2.42E-01	2.33E-01	2.04E-03	5.44E-04	7.13E-05	5.56E-03	1.25E-04		
NHWD	kg	3.48E+02	2.77E+02	6.30E+00	1.07E+01	1.84E+01	1.71E+01	1.87E+01		
RWD	kg	5.47E-02	3.53E-02	1.56E-03	1.41E-03	1.85E-04	1.60E-02	3.30E-04		
MER	kg	1.77E+01	0.00E+00	1.70E-01	0.00E+00	2.05E+00	0.00E+00	1.55E+01		
MFR	kg	2.51E+02	3.67E+01	3.49E+00	0.00E+00	5.72E+01	0.00E+00	1.53E+02		
CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
ETE	МЈ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
EEE	МЈ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		

HWD: hazardous waste disposed; NHWD: non-hazardous waste disposed; RWD: radioactive waste disposed; MER: materials for energy recovery; MFR: material for recycling; CRU: components for reuse; ETE: exported thermal energy; EEE: exported electricity energy.

0.0 11.0000.455.48.11.1.					
Approved	Public	2RDA044890	A	en	16/20
STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE

VD4/SFU 24.12.12 DY501/3

	1124	T.4.1	UPSTREAM	CORE		DOWNSTRE	АМ	
Impact category	Unit	Total	Manufacturing		Distribution	Installation	Use	End of life
GWP - total	kg CO₂ eq.	1.95E+03	1.06E+03	-5.46E+01	1.38E+01	2.61E+01	9.03E+02	3.50E+00
GWP - fossil	kg CO₂ eq.	1.94E+03	1.02E+03	7.25E+01	1.38E+01	1.93E+00	8.28E+02	3.50E+00
GWP - biogenic	kg CO₂ eq.	4.77E+00	3.26E+01	-1.27E+02	1.25E-02	2.41E+01	7.53E+01	5.48E-03
GWP - luluc	kg CO₂ eq.	1.63E+00	1.40E+00	1.10E-01	5.48E-03	8.65E-04	1.07E-01	1.29E-03
ODP	kg CFC-11 eq.	2.00E-04	7.15E-05	1.01E-05	3.23E-06	4.23E-07	1.14E-04	7.60E-07
АР	mol H⁺ eq.	1.83E+01	1.42E+01	1.69E-01	7.01E-02	1.17E-02	3.82E+00	1.66E-02
EP - freshwater	kg P eq.	1.33E+00	1.13E+00	6.62E-03	8.98E-04	2.42E-04	1.91E-01	2.10E-04
POCP	kg NMVOC eq.	6.97E+00	4.88E+00	1.67E-01	7.52E-02	1.34E-02	1.82E+00	1.80E-02
ADP – minerals and metals	kg Sb eq.	2.59E-01	2.57E-01	1.29E-04	4.85E-05	6.48E-06	1.82E-03	1.12E-05
ADP – fossil	MJ, net calorific value	2.69E+04	1.28E+04	1.16E+03	2.11E+02	2.93E+01	1.27E+04	4.98E+01
WDP	m³ eq.	9.30E+02	3.83E+02	5.15E+00	6.35E-01	8.21E-02	5.40E+02	2.19E-01

GWP-fossil: Global Warming Potential fossil; GWP-biogenic: Global Warming Potential biogenic; GWP-luluc: Global Warming Potential land use and land use change; ODP: Depletion potential of the stratospheric ozone layer; AP: Acidification potential; EP-freshwater: Eutrophication potential-freshwater compartment; POCP: Formation potential of tropospheric ozone; ADP $minerals\ \&\ metals:\ Abiotic\ Depletion\ for\ non-fossil\ resources\ potential;\ ADP-fossil:\ Abiotic\ Depletion\ for\ fossil\ resources\ potential,$ WDP: Water deprivation potential.

Resource	l lade	Total	UPSTREAM	CORE		DOWNST	REAM	
use parameters	Unit	iotai	Manufac	turing	Distribution	Installation	Use	End of life
PENRE	MJ, low cal. value	2.68E+04	1.26E+04	1.16E+03	2.11E+02	2.93E+01	1.27E+04	4.98E+01
PERE	MJ, low cal. value	7.40E+03	1.41E+03	2.69E+03	2.97E+00	4.51E-01	3.30E+03	7.68E-01
PENRM	MJ, low cal. value	1.37E+02	1.37E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERM	MJ, low cal. value	1.37E+02	0.00E+00	1.37E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	MJ, low cal. value	2.69E+04	1.28E+04	1.16E+03	2.11E+02	2.93E+01	1.27E+04	4.98E+01
PERT	MJ, low cal. value	7.53E+03	1.41E+03	2.82E+03	2.97E+00	4.51E-01	3.30E+03	7.68E-01
FW	m³	2.67E+01	1.16E+01	1.60E-01	2.35E-02	3.86E-03	1.49E+01	8.18E-03
MS	kg	5.64E+01	5.64E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	МЈ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	МЈ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

PENRE: Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw material; PERE: Use of renewable primary energy excluding renewable primary energy resources used as raw material; PENRM: Use of nonrenewable primary energy resources used as raw material; PERM: Use of renewable primary energy resources used as raw material; PENRT: Total use of non-renewable primary energy resources (primary energy and primary energy resources used as $raw\ materials); PERT: Total\ use\ of\ renewable\ primary\ energy\ resources\ (primary\ energy\ and\ primary\ energy\ resources\ used\ as$ raw materials); FW: Net use of fresh water; MS: Use of secondary materials; RFS: Use of renewable secondary fuels, NRSF: Use of non-renewable secondary fuels.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	2RDA044890	A	en	17/20		
© Convright 2022 ARR All rights reserved							

Waste	Waste production Unit		UPSTREAM	CORE		DOWNSTREAM				
indicators	Onic	Total	Manufact	uring	Distribution	Installation	Use	End of life		
HWD	kg	1.43E-01	1.27E-01	2.04E-03	5.50E-04	7.13E-05	1.27E-02	1.27E-04		
NHWD	kg	3.70E+02	2.76E+02	6.30E+00	1.08E+01	1.84E+01	3.92E+01	1.95E+01		
RWD	kg	7.45E-02	3.45E-02	1.56E-03	1.43E-03	1.85E-04	3.65E-02	3.37E-04		
MER	kg	1.78E+01	0.00E+00	1.70E-01	0.00E+00	2.05E+00	0.00E+00	1.55E+01		
MFR	kg	2.53E+02	3.72E+01	3.49E+00	0.00E+00	5.72E+01	0.00E+00	1.56E+02		
CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
ETE	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
EEE	МЈ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		

HWD: hazardous waste disposed; NHWD: non-hazardous waste disposed; RWD: radioactive waste disposed; MER: materials for energy recovery; MFR: material for recycling; CRU: components for reuse; ETE: exported thermal energy; EEE: exported electricity energy.

VD4/SFU 24.25.12 DY501/4

Institution of the second	l limite	Total	UPSTREAM	CORE		DOWNSTRE	AM	
Impact category	Unit	iotai	Manufact	uring	Distribution	Installation	Use	End of life
GWP - total	kg CO₂ eq.	3.55E+03	1.58E+03	-5.46E+01	1.69E+01	2.61E+01	1.97E+03	4.58E+00
GWP - fossil	kg CO₂ eq.	3.44E+03	1.54E+03	7.25E+01	1.69E+01	1.93E+00	1.81E+03	4.57E+00
GWP - biogenic	kg CO₂ eq.	1.03E+02	4.14E+01	-1.27E+02	1.54E-02	2.41E+01	1.65E+02	7.11E-03
GWP - luluc	kg CO₂ eq.	2.71E+00	2.36E+00	1.10E-01	6.70E-03	8.65E-04	2.35E-01	1.74E-03
ODP	kg CFC-11 eq.	3.71E-04	1.05E-04	1.01E-05	3.95E-06	4.23E-07	2.50E-04	1.02E-06
АР	mol H⁺ eq.	5.48E+01	4.61E+01	1.69E-01	8.57E-02	1.17E-02	8.35E+00	2.23E-02
EP - freshwater	kg P eq.	4.05E+00	3.62E+00	6.62E-03	1.10E-03	2.42E-04	4.18E-01	2.82E-04
POCP	kg NMVOC eq.	1.53E+01	1.11E+01	1.67E-01	9.21E-02	1.34E-02	3.97E+00	2.41E-02
ADP – minerals and metals	kg Sb eq.	1.01E+00	1.01E+00	1.29E-04	5.94E-05	6.48E-06	3.97E-03	1.49E-05
ADP – fossil	MJ, net calorific value	4.87E+04	1.94E+04	1.16E+03	2.58E+02	2.93E+01	2.78E+04	6.68E+01
WDP	m³ eq.	2.11E+03	9.21E+02	5.15E+00	7.77E-01	8.21E-02	1.18E+03	3.15E-01

GWP-fossil: Global Warming Potential fossil; GWP-biogenic: Global Warming Potential biogenic; GWP-luluc: Global Warming Potential land use and land use change; ODP: Depletion potential of the stratospheric ozone layer; AP: Acidification potential; EP-freshwater: Eutrophication potential-freshwater compartment; POCP: Formation potential of tropospheric ozone; ADP $minerals\ \&\ metals: Abiotic\ Depletion\ for\ non-fossil\ resources\ potential; ADP-fossil:\ Abiotic\ Depletion\ for\ fossil\ resources\ potential,$ WDP: Water deprivation potential.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	2RDA044890	Α	en	18/20		
© Copyright 2022 ARR All rights reserved							

Resource	11-24	7.4.1	UPSTREAM	CORE		DOWNST	REAM	
use parameters	Unit	Total	Manufac	Manufacturing		Installation	Use	End of life
PENRE	MJ, low cal. value	4.85E+04	1.92E+04	1.16E+03	2.58E+02	2.93E+01	2.78E+04	6.68E+01
PERE	MJ, low cal. value	1.28E+04	2.87E+03	2.69E+03	3.64E+00	4.51E-01	7.21E+03	1.02E+00
PENRM	MJ, low cal. value	1.60E+02	1.60E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERM	MJ, low cal. value	1.37E+02	0.00E+00	1.37E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	MJ, low cal. value	4.87E+04	1.94E+04	1.16E+03	2.58E+02	2.93E+01	2.78E+04	6.68E+01
PERT	MJ, low cal. value	1.29E+04	2.87E+03	2.82E+03	3.64E+00	4.51E-01	7.21E+03	1.02E+00
FW	m ³	5.77E+01	2.49E+01	1.60E-01	2.88E-02	3.86E-03	3.26E+01	1.12E-02
MS	kg	6.84E+01	6.84E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	МЈ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	МЈ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

PENRE: Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw material; PERE: Use of renewable primary energy excluding renewable primary energy resources used as raw material; PENRM: Use of non-renewable primary energy resources used as raw material; PERM: Use of renewable primary energy resources used as raw material; PENRT: Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); FW: Net use of fresh water; MS: Use of secondary materials; RFS: Use of renewable secondary fuels, NRSF: Use of non-renewable secondary fuels.

Waste	Waste production Unit	Total	UPSTREAM	CORE	DOWNSTREAM				
indicators	Onic	iotai	Manufacturing		Distribution	Installation	Use	End of life	
HWD	kg	2.13E-01	1.82E-01	2.04E-03	6.74E-04	7.13E-05	2.78E-02	1.70E-04	
NHWD	kg	6.10E+02	4.57E+02	6.30E+00	1.33E+01	1.84E+01	8.58E+01	2.90E+01	
RWD	kg	1.39E-01	5.48E-02	1.56E-03	1.74E-03	1.85E-04	7.99E-02	4.51E-04	
MER	kg	2.76E+01	0.00E+00	1.70E-01	0.00E+00	2.05E+00	0.00E+00	2.54E+01	
MFR	kg	3.10E+02	4.92E+01	3.49E+00	0.00E+00	5.72E+01	0.00E+00	2.00E+02	
CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
ETE	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
EEE	МЈ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	

HWD: hazardous waste disposed; NHWD: non-hazardous waste disposed; RWD: radioactive waste disposed; MER: materials for energy recovery; MFR: material for recycling; CRU: components for reuse; ETE: exported thermal energy; EEE: exported electricity energy.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	2RDA044890	Α	en	19/20		
e C. C. Chiagona ann all Chiagona							

References

- LCA Report 2RDA044876 Rev. A VD4_SFU_DY501
- EN 50693:2019 Product category rules for life cycle assessments of electronic and electrical products and systems
- PCR EPDItaly007 Electronic and electrical products and systems (rev.2), October 2020
- PCR EPDItaly012 Electronic and electrical products and systems Switches, March 2020
- IEC/TR 62635 Guidelines for end-of-life information provided by manufacturers and recyclers and for recyclability rate calculation of electrical and electronic equipment - Edition 1.0 2012-10
- UNI EN ISO 14040:2021 Environmental management -Life cycle assessment -Principles and framework
- UNI EN ISO 14044:2021 Environmental management Life cycle assessment -Requirements and guidelines
- Ecoinvent, 2021. Swiss Centre for Life Cycle Assessment, v3.8 (www.ecoinvent.ch).
- PRé Consultants, 2021. Software SimaPro versione 9.3.0.3 (www.pre.nl).
- The Italian Institute for Environmental Protection and Research, ISPRA (https://www.isprambiente.gov.it/it)
- EPDItaly Regulations rev. 5.2 (16/02/2022)

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	2RDA044890	A	en	20/20